
Leapfrog Flow Maps for Real-Time Fluid Simulation
YUCHEN SUN, Georgia Institute of Technology, USA
JUNLIN LI, Georgia Institute of Technology, USA
RUICHENG WANG, Georgia Institute of Technology, USA
SINAN WANG, Georgia Institute of Technology, USA
ZHIQI LI, Georgia Institute of Technology, USA
BART G. VAN BLOEMEN WAANDERS, Sandia National Laboratories, USA
BO ZHU, Georgia Institute of Technology, USA

Fig. 1. Burning fire ball (left), delta wingtip vortices (middle left), helical trail behind a wind turbine (middle right), two connecting vortex rings (right).

We propose Leapfrog Flow Maps (LFM) to simulate incompressible fluids
with rich vortical flows in real time. Our key idea is to use a hybrid velocity-
impulse scheme enhanced with leapfrog method to reduce the computational
workload of impulse-based flow map methods, while possessing strong abil-
ity to preserve vortical structures and fluid details. In order to accelerate
the impulse-to-velocity projection, we develop a fast matrix-free Algebraic
Multigrid Preconditioned Conjugate Gradient (AMGPCG) solver with cus-
tomized GPU optimization, which makes projection comparable with im-
pulse evolution in terms of time cost. We demonstrate the performance of
our method and its efficacy in a wide range of examples and experiments,
such as real-time simulated burning fire ball and delta wingtip vortices.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: Real-Time Fluid Simulation Leapfrog
Integration, Flow Map Methods, Impulse Gauge Method, Multigrid, GPU

ACM Reference Format:
Yuchen Sun, Junlin Li, Ruicheng Wang, Sinan Wang, Zhiqi Li, Bart G. van
Bloemen Waanders, and Bo Zhu. 2025. Leapfrog Flow Maps for Real-Time
Fluid Simulation. ACM Trans. Graph. 44, 4 (August 2025), 12 pages. https:
//doi.org/10.1145/3731180

Authors’ Contact Information: Yuchen Sun, yuchen.sun.eecs@gmail.com, Georgia
Institute of Technology, USA; Junlin Li, jli3518@gatech.edu, Georgia Institute of Tech-
nology, USA; Ruicheng Wang, wrc0326@outlook.com, Georgia Institute of Technology,
USA; Sinan Wang, swang3081@gatech.edu, Georgia Institute of Technology, USA;
Zhiqi Li, zli3167@gatech.edu, Georgia Institute of Technology, USA; Bart G. van
Bloemen Waanders, bartv@sandia.gov, Sandia National Laboratories, USA; Bo Zhu,
bo.zhu@gatech.edu, Georgia Institute of Technology, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 1557-7368/2025/8-ART
https://doi.org/10.1145/3731180

1 Introduction
Producing and evolving vortical structures in a real-time simula-
tion environment has been a challenging task. Existing real-time
systems predominantly rely on a combination of stable fluid solvers
[Stam 1999a] on grids, enhanced by vorticity confinement tech-
niques [Selle et al. 2005] or noise functions, to synthesize small-
scale details into a flow field (e.g., see the fluid simulation solvers in
real-time physics engines such as EmberGen [JangaFX 2024] and
Unreal [Games 2024]). These methods have achieved significant
success in generating visually appealing fluid motions and enabling
interactions with objects in real time.
However, despite the impressive visual effects of these small-

scale turbulent details, producing physically plausible or accurate
vortical evolution in real time remains challenging. This limitation
constrains the applications of real-time fluid solvers to the realm of
visual effects. In applications requiring a certain degree of physical
fidelity, these confinement-based or noise-based approaches reveal
their shortcomings. For example, existing fast fluid solvers often
struggle to successfully pass benchmark vorticity evolution tests,
such as producing a Kármán vortex street or simulating the leapfrog
evolution of vortex rings.
This paper takes an initial step toward developing a real-time

fluid solver capable of simulating physically accurate vortical struc-
ture evolution. The solver is built upon the impulse-based flow-
map framework, which has garnered increasing attention in recent
years due to its inherent ability to preserve spatiotemporal vortical
structures in various fluid simulation tasks. A key mechanism that
enables flow-map methods to preserve vortical structures is their
bidirectional marching scheme, which allows a particle to move
forward and backward along its flow-map trajectory in a tempo-
rally symmetric manner, ensuring the conservation of important
geometric and physical quantities.

However, establishing such a bidirectional map is computationally
expensive and demands significant memory resources. In Neural

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/3731180
https://doi.org/10.1145/3731180
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731180


2 • Yuchen Sun, Junlin Li, Ruicheng Wang, Sinan Wang, Zhiqi Li, Bart G. van Bloemen Waanders, and Bo Zhu

Fig. 2. Wind Turbine. A wind turbine rotates in an inlet. The blades of the wind turbine generate helical trails downstream.

Flow Maps (NFM) [Deng et al. 2023], creating the bidirectional
map requires maintaining a velocity buffer with snapshots of the
velocity field from previous time frames. This accommodates long-
distance backtracing from the current grid nodes to their initial
mapping starting points. In particular, calculating the mapping for
the 𝑘-th time step along the map trajectory requires storing 𝑂 (𝑘)
velocity buffers and backtrace with 𝑂 (𝑘) time steps to get to the
initial point. Second, to achieve symmetric time integration for
each time step along the flow map, an additional projection step
is required to generate a divergence-free velocity at the midpoint
between 𝑡𝑛 and 𝑡𝑛+1. This doubles the projection cost compared to a
standard grid-based advection-projection solver. Consequently, the
time performance of flow-map methods, as reported in the current
literature, falls significantly short of the standards required for a
real-time fluid solver.

We addressed the two primary challenges hindering the advance-
ment of flow-map methods toward real-time simulation by intro-
ducing a novel backtrace time integrator. Inspired by the Leapfrog
time integrator from the ODE literature, which is widely used to
evolve symplectic systems in a geometrically symmetric manner
(i.e., forward and backward motion along the time axis remains on
the same trajectory), we developed Leapfrog Flow Maps (LFM). This
approach significantly reduces the number of backtrace steps and
simplifies the projection steps.

Our key observation is that the accuracy of the mapped impulse
at the end of a reinitialization cycle is critical, as it solely deter-
mines the future evolution of the flow. However, backtracing for
impulse may not be necessary during intermediate steps, providing
an opportunity to optimize the previously complex time integrator.
Based on this observation, we propose a hybrid velocity-impulse
scheme. This scheme employs velocity advection, enhanced by the
Leapfrog time integrator, for intermediate steps, combined with
a long-range, accurate bidirectional marching step at the end of
each reinitialization cycle. Furthermore, the interleaved advection
in the Leapfrog method eliminates the need for extra projection
steps while maintaining second-order accuracy.

Our experiments demonstrate that the LFM scheme achieves com-
parable simulation accuracy to the traditional flow-map methods
(e.g., NFM [Deng et al. 2023]) while significantly reducing computa-
tional workload, making it more suitable for real-time applications.
We summarize our main contributions as:

• Leapfrog Flow Maps (LFM), a hybrid velocity-impulse time
integrator to reduce the projection times by half and the
flow-map marching steps by up to 76% in NFM.

• A fast matrix-free Algebraic Multigrid Preconditioned Conju-
gate Gradient (AMGPCG) solver on GPU to solve large-scale
Poisson systems for real-time fluid simulation.
• A real-time fluid simulator to produce accurate and interactive
vortical evolution at the resolution of 256 × 128 × 128.

2 Related Work
Gauge Methods. Impulse can be defined by rewriting the Navier-

Stokes equations into the Hamiltonian formulation through a gauge
transformation [Oseledets 1989]. Researchers in the field of Com-
putational Fluid Dynamics initially employed impulse to preserve
the Hamiltonian structures of incompressible fluid flows [Buttke
1992]. Subsequent investigations have explored various aspects of
impulse, including turbulence [Buttke and Chorin 1993], boundary
force [Cortez 1996], solid boundary treatment [Summers 2000] and
numerical stability [Weinan and Liu 2003]. Saye [2016, 2017] devel-
oped a discontinuous Galerkin method for simulating multiphase
flow, based on a simplified velocity-impulse density formulation
[Weinan and Liu 1997]. More recently, the concept of impulse has
garnered increasing attention within the computer graphics com-
munity [Feng et al. 2023; Yang et al. 2021]. Nabizadeh et al. [2022]
combined impulse with bidirectional flow maps [Qu et al. 2019]
to better capture vortical structures. Deng et al. [2023] proposed
a backward marching scheme with a neural buffer to improve the
accuracy of flow map tracking and impulse transport. Beyond Euler-
ian approaches, hybrid Eulerian-Lagrangian methods for impulse
have been developed [Nabizadeh et al. 2024; Zhou et al. 2024]. In
addition to smoke simulation, impulse-based methods have been
applied to free-surface flows [Li et al. 2024a; Sancho et al. 2024],
two-phase flows [Sun et al. 2024], solid-fluid interaction [Chen et al.
2024] and particle-laden fluid [Li et al. 2024b].

Multigrid. Projection is the bottleneck of fluid simulation. Some
researchers accelerate projection via multigrid methods. McAdams
et al. [2010] proposed a Geometric Multigrid method supporting
mixed Neumann and Dirichlet boundary conditions. Their method
can be massively parallelized, but it cannot handle Poisson equation
with variable coefficients (VC) and only has first-order accuracy
for boundary condition. Chentanez and Müller [2011] devised a
GPU-friendly multigrid method for liquid simulation on a tall cell
grid. Instead of coarsening, they compute the coefficients for each
level separately based on level set and solid fraction, which fails
to satisfy the Galerkin Principle. Conversely, Algebraic Multigrid
(AMG) [Ruge and Stüben 1987] has second-order accuracy and a
Galerkin coarsening strategy. Recently, researchers have explored
using AMG to efficiently solve Poisson equations with non-negative

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



Leapfrog Flow Maps for Real-Time Fluid Simulation • 3

Fig. 3. Head-on Vortex Rings Collision. A pair of vortex rings with opposite vorticity approach each other, then collide.

pressure constraints in fluid simulation [Takahashi and Batty 2023,
2025]. A variant of Algebraic Multigrid, Unsmoothed Aggregation
Algebraic Multigrid (UAAMG), can be implemented in a matrix-free
manner on a grid. Although UAAMG converges more slowly than
the original AMG, adding a scale coefficient in the prolongation step
can improve convergence when UAAMG is used as a preconditioner
for the Conjugate Gradient solver [Stüben 2001]. UAAMG was first
applied to fluid simulation by Bolz et al. [2003] and was adopted in
the smoke simulator of Houdini [Zarifi 2020]. Shao et al. [2022] ex-
tended it to viscous liquid simulation and provided a fast matrix-free
CPU implementation accelerated by Advanced Vector Extensions
(AVX) instructions. Naumov et al. [2015] and Bernaschi et al. [2020]
provided efficient libraries of GPU AMG solvers. However, these
libraries are based on sparse matrix representation which inevitably
incurs huge performance cost [Shao et al. 2022]. By contrast, our
solver is matrix-free and highly optimized via techniques such as
tiled data structure, data trimming and aggregated CUDA kernels.

Table 1. A comparison between previous Multigrid solvers and ours.

Method GPU VC matrix-free Galerkin
[McAdams et al. 2010] ✗ ✗ ✓ ✗

[Chentanez and Müller 2011] ✓ ✓ ✓ ✗

[Naumov et al. 2015] ✓ ✓ ✗ ✓

[Bernaschi et al. 2020] ✓ ✓ ✗ ✓

[Shao et al. 2022] ✗ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓

High-Performance Eulerian Fluid Simulation. In recent years, a
wide range of approaches have been explored to enhance the per-
formance of Eulerian fluid simulation, including adaptive solvers,
sparse solvers, spectral methods, data-driven methods and Lattice
Boltzman methods (LBM). The use of spatial adaptivity to reduce
computational workload has been extensively studied since the pio-
neering work of Berger and Oliger [1984]. Two widely adopted adap-
tive grid data structures are octrees [Ando and Batty 2020; Goldade
et al. 2019; Losasso et al. 2004] and sparse paged grids [Aanjaneya
et al. 2017; Liu et al. 2016; Setaluri et al. 2014]. Instead of a single
adaptive grid, Lentine et al. [2010] proposed utilizing overlapping
grids with different resolutions, as the irregular data structures in
adaptive grids hinder GPU acceleration. In liquid simulation, fluids
typically occupy only a small region of the computational domain,
which can be efficiently simulated with sparse volume structures
[Museth 2013; Wu et al. 2018]. For smoke simulation with specific
boundary condition, the spectral modes and eigenfunctions of the

Laplacian operator can be used to accelerate the simulation perfor-
mance [Cui et al. 2018; Stam 1999b]. Motivated by spectral methods,
Rabbani et al. [2022] proposed an efficient Poisson-filter solver ca-
pable of approximating multiple Jacobi iterations. With the rise of
deep learning, some researchers have explored the use of neural
networks for pressure projection to achieve performance improve-
ment [Tompson et al. 2017; Yang et al. 2016]. While the previously
mentioned methods focus on improving pressure projection, Lattice
Boltzmann methods have the advantage of not requiring pressure
projection in their formulation. Researchers have developed efficient
Lattice Boltzman methods for fluid-solid coupling [Li et al. 2020;
Lyu et al. 2021], two-phase flows [Li et al. 2022] and virtual wind
tunnels [Lyu et al. 2023].

Notation Type Meaning
𝝆 scalar density
𝒖 vector velocity
𝑝 scalar pressure
𝜇 scalar dynamic viscosity
𝒇 vector external force
𝒎 vector impulse
𝚽 vector forward flow map
𝚿 vector backward flow map
F matrix Jacobian of forward flow map
T matrix Jacobian of backward flow map
𝜉 scalar gauge variable
𝑛 scalar number of steps in a reinitialization cycle

Table 2. Summary of notations in this paper.

3 Physical Model
We use regular symbols for scalars, bold symbols for vectors, and
calligraphic symbols for matrices. The temporal parameter of a field
is placed in the subscript, while the spatial parameter is placed in
parentheses. The notations used throughout this paper are summa-
rized in Table 2.

Consider the incompressible Navier-Stokes equations:
𝜌
D𝒖
D𝑡

= −∇𝑝 + 𝜇∇2𝒖 + 𝒇 ,

∇ · 𝒖 = 0.
(1)

where𝒇 denotes external forces such as gravity and buoyancy. Based
on the velocity field 𝒖, the impulse field 𝒎 is defined through its

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



4 • Yuchen Sun, Junlin Li, Ruicheng Wang, Sinan Wang, Zhiqi Li, Bart G. van Bloemen Waanders, and Bo Zhu

Fig. 4. Fire Ball. A burning fireball surrounded by swirling vortical flames, where the intense combustion generates complex vortex structures that propagate
outward with the flow of hot gases.

initial condition and material derivative:
𝒎0 (𝒙) = 𝒖0 (𝒙),
𝐷𝒎

𝐷𝑡
= −(∇𝒖)𝑇𝒎.

(2)

We utilize flow maps to describe the motion of fluids. Consider
a fluid particle moving according to a flow field 𝒖. Over the time
interval from 𝑎 to 𝑏, the forward flow map 𝚽𝑎,𝑏 maps the initial
position 𝑿 of a fluid particle to its final position 𝒙 . The backward
flow map 𝚿𝑏,𝑎 is defined as the inverse mapping of 𝚽𝑎,𝑏 .{

𝚽𝑎,𝑏 (𝑿 ) = 𝒙,

𝚿𝑏,𝑎 (𝒙) = 𝑿 .
(3)

The Jacobians of 𝚽𝑎,𝑏 and 𝚿𝑏,𝑎 are represented by F𝑎,𝑏 and T𝑏,𝑎

respectively. From a flow-map perspective, impulse can be recon-
structed based on its initial condition and the backward flow map
through the pullback operator [Nabizadeh et al. 2022]:

𝒎𝑡 (𝒙) = T𝑇
𝑡,0 (𝒙)𝒖0 (𝚿𝑡,0 (𝒙)). (4)

The difference between the impulse and velocity fields consists of
a gauge term and the path integral of viscous and external forces
along the trajectory of a fluid particle:

𝒖𝑡 (𝒙) = 𝒎𝑡 (𝒙) −
1
𝜌
∇𝜉0,𝑡 (𝒙)+

1
𝜌
T𝑇
𝑡,0 (𝒙)

∫ 𝑡

0
F𝑇
0,𝜏 (𝑿 )

(
𝜇∇2𝒖𝜏 + 𝒇𝜏

)
(𝚿𝑡,𝜏 (𝒙))d𝜏 .

(5)

Here 𝑿 is the initial position of a fluid particle that is located at 𝒙
at time 𝑡 , and 𝚿𝑡,𝜏 (𝒙) specifies the position of the fluid particle at
time 𝜏 . We have 𝜉0,𝑡 representing the gauge variable as:

𝜉0,𝑡 (𝒙) =
∫ 𝑡

0

(
𝑝𝜏 −

1
2
𝜌 |𝒖𝜏 |2

)
(𝚿𝑡,𝜏 (𝒙))d𝜏 (6)

The velocity field can be obtained from the impulse field by first
subtracting the path integral term from the impulse, followed by
solving a Poisson equation for the gauge variable.

4 Leapfrog Flow Maps
NFM [Deng et al. 2023] has demonstrated high simulation fidelity
and excellent vortex preservation. However, its complex flow-map
time integration scheme is significantly slower compared to tra-
ditional velocity-based simulators. Specifically, at every time step,

NFM has an extra projection for the midpoint velocity and involves
multiple marching steps of backward flow maps to pull back the
impulse. Drawing inspiration from both NFM and the Leapfrog
Method, we propose Leapfrog Flow Maps (LFM), a much more effi-
cient hybrid velocity-impulse approach that achieves comparable
results.

For simplicity in the following discussion, we abbreviate the end
time 𝑡𝑖 of step 𝑖 as 𝑖 in subscripts.

4.1 Reinitialization Cycle
Like other impulse-based flow map methods [Deng et al. 2023;
Nabizadeh et al. 2022], LFM requires periodic reinitialization of
the impulse as velocity and the flow map as the identity map ev-
ery certain number of time steps to prevent numerical instability
caused by flow map distortion. Consider a reinitialization cycle with
𝑛 time steps. Across this time interval, the initial velocity 𝒖0 is trans-
formed to impulse 𝒎𝑛 via the long-range backward flow map 𝚿𝑛,0
(Equation (4)). Then, 𝒎𝑛 is projected onto 𝒖𝑛 by solving a Poisson
equation, and 𝒖𝑛 becomes the initial velocity for the subsequent
reinitialization cycle. Instead of advection, which involves frequent
interpolation and significant numerical dissipation, we adopt march-
ing to obtain 𝚿𝑛,0. In each step, we directly store the velocity fields
of different time steps in the global memory of GPU rather than us-
ing a neural buffer [Deng et al. 2023] for performance consideration.
The global memory buffer is cleared when reinitialization happens.
After the velocity fields are available, we can directly backward
march a virtual fluid particle located at a grid point to compute
its trajectory. We employ the RK4 marching customized for flow
maps and their Jacobians (Algorithm 2 of NFM [Deng et al. 2023])
to evolve 𝚿 and T. Quadratic B splines is used for velocity interpo-
lation. While the marching scheme provides an accurate backward
flow map, interpolation during the pullback process may introduce
numerical dissipation. To alleviate this, we simultaneously march
the forward flow map and its Jacobian at each step and use them
for back-and-forth error compensation.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



Leapfrog Flow Maps for Real-Time Fluid Simulation • 5

Fig. 5. Vortex Rings Connection. A pair of vortex rings deform, connect. A small vortex ring then separate off.

Algorithm 1 LFM Reinitialization Cycle
Input: 𝒖0
Output: 𝒖𝑛
1: 𝒖†0 ← 𝒖0+Δ𝑡2𝜌 (𝜇∇

2𝒖0 + 𝒇0); ⊲ blue for viscosity and ext force

2: �̃�1/2 ← RK2-Advect(𝒖†0 , 𝒖0,Δ𝑡/2);
3: 𝒖1/2 ← Project(�̃�1/2);Store 𝒖1/2 in buffer;
4: 𝚽0,1, F0,1 ← RK4-March(𝚽0,0, F0,0, 𝒖1/2,Δ𝑡);
5: 𝒖0 ← 𝒖0 + Δ𝑡

𝜌 F𝑇
0,1/2 (𝜇∇

2𝒖1/2 + 𝒇1/2) (𝚽0,1/2);
6: 𝒖†1/2 ← 𝒖1/2+Δ𝑡𝜌 (𝜇∇

2𝒖1/2 + 𝒇1/2);
7: �̃�3/2 ← RK2-Advect(𝒖†1/2, 𝒖1/2,Δ𝑡);
8: 𝒖3/2 ← Project(�̃�3/2); Store 𝒖3/2 in buffer;
9: 𝚽0,2, F0,2 ← RK4-March(𝚽0,1, F0,1, 𝒖3/2,Δ𝑡);
10: 𝒖0 ← 𝒖0 + Δ𝑡

𝜌 F𝑇
0,3/2 (𝜇∇

2𝒖3/2 + 𝒇3/2) (𝚽0,3/2);
11: for 𝑖 = 2 to 𝑛 − 1 do
12: 𝒖†

𝑖−3/2 ← 𝒖𝑖−3/2+ 2Δ𝑡𝜌 (𝜇∇
2𝒖𝑖−1/2 + 𝒇𝑖−1/2);

13: �̃�𝑖+1/2 ← RK2-Advect(𝒖†
𝑖−3/2, 𝒖𝑖−1/2, 2Δ𝑡);

14: 𝒖𝑖+1/2 ← Project(�̃�𝑖+1/2);Store 𝒖𝑖+1/2 in buffer;
15: 𝚽0,𝑖+1, F0,𝑖+1 ← RK4-March(𝚽0,𝑖 , F0,𝑖 , 𝒖𝑖+1/2,Δ𝑡);
16: 𝒖0 ← 𝒖0 + Δ𝑡

𝜌 F𝑇
0,𝑖+1/2 (𝜇∇

2𝒖𝑖+1/2 + 𝒇𝑖+1/2) (𝚽0,𝑖+1/2);
17: end for
18: 𝚿𝑛,𝑛 ← id, 𝚽0,0 ← id, T𝑛,𝑛 ← 𝑰 , F0,0 ← 𝑰 ;
19: for 𝑖 = 𝑛 to 1 do
20: 𝚿𝑛,𝑖−1, T𝑛,𝑖−1 ← RK4-March(𝚿𝑛,𝑖 , T𝑛,𝑖 , 𝒖𝑖−1/2,−Δ𝑡);
21: end for
22: 𝒎𝑛 ← T𝑇

𝑛,0𝒖0 (𝚿𝑛,0);
23: �̂�0 ← F𝑇

0,𝑛𝒎𝑛 (𝚽0,𝑛);
24: 𝒆 ← (�̂�0 − 𝒖0)/2; ⊲ roundtrip error
25: 𝒎𝑛 ← 𝒎𝑛 − T𝑇

𝑛,0𝒆(𝚿𝑛,0); ⊲ error compensation
26: 𝒎𝑛 ← Clamp(𝒎𝑛) ⊲ optional
27: 𝒖𝑛 ← Project(𝒎𝑛);

4.2 Leapfrog Method for Midpoint Velocity
The Leapfrog method is a second-order symplectic integrator with
only modest additional computational cost compared to the first-
order Euler method, while providing better long-term stability. An-
other type of symplectic integrator, Verlet method, has been widely
used in Position Based Dynamics [Jakobsen 2001]. Using the mid-
point velocity at each time step ensures second-order accuracy
for each marching step. Additionally, it maintains the symmetry
between the backward and forward flow map evolutions, further en-
hancing the effectiveness of back-and-forth error compensation.

While the eventual velocity 𝒖𝑛 is obtained from a long-ranged
mapped impulse, the midpoint velocities are computed via velocity
advection, which is significantly more efficient.

We employ the leapfrog method combined with RK2 advection to
compute the midpoint velocities, ensuring second-order accuracy,
and require a consistent step size Δ𝑡 for all time steps within each
reinitialization cycle. In the leapfrog method, velocities are advected
in an interleaved manner, where the projection time of the previous
step serves as the midpoint for the next advection. This approach
enables second-order accuracy in velocity advection without re-
quiring additional computations to explicitly evaluate the midpoint
velocity for the next step. A special case arises during the first two
steps of the reinitialization cycle, where the leapfrog scheme cannot
be applied because the required midpoint velocities from previous
steps are unavailable.
Once the midpoint velocities are computed, we perform a back-

ward marching to obtain 𝚿𝑛,0 and subsequently 𝒖𝑛 . The velocity
𝒖𝑛 solely determines the fluid’s future evolution after reinitializa-
tion at time step 𝑛, while the midpoint velocities serve only as
auxiliary variables for computing 𝒖𝑛 . In experiments, we find that
the midpoint method, impulse, long-range flow maps, and error
compensation are all essential for accurately determining 𝒖𝑛 . The
midpoint velocities contribute to the calculation of 𝒖𝑛 through the
marching of bidirectional flow maps. Additionally, we observe that
leapfrog velocity advection for computing the midpoint velocities
yields favorable results for 𝒖𝑛 . Leveraging impulse is unnecessary
for computing the midpoint velocities.

4.3 Comparison with NFM
We compare the simulation part of NFM with LFM, excluding the
neural buffer. The pseudocode for an LFM reinitialization cycle and
an NFM reinitialization cycle are presented in Algorithm 1 and Algo-
rithm 2, respectively. LFM has a significantly lower computational
workload compared to NFM. While NFM achieves high simulation
accuracy, it requires two projections and multiple marching steps to
compute flow maps at each time step. In contrast, LFM only needs
one projection and one advection per dimension in each time step.
Despite this, our experiments show that LFM achieves simulation
accuracy comparable to NFM.

NFM stores flowmaps on each face of a staggered grid. For a reini-
tialization cycle with 𝑛 time steps, NFM requires 1

2𝑛
2 + 5

2𝑛 marching
steps per dimension and 2𝑛 projections. In comparison, LFM only
requires 𝑛 advections, 2𝑛 marching steps per dimension, and 𝑛 + 1
projections for the same reinitialization cycle. Moreover, marching

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



6 • Yuchen Sun, Junlin Li, Ruicheng Wang, Sinan Wang, Zhiqi Li, Bart G. van Bloemen Waanders, and Bo Zhu

𝒊 െ 𝟐 𝒊 െ 𝟏 𝒊 𝒊  𝟏 𝒊  𝟐𝟎

𝟎

𝒏

𝒊 െ 𝟐 𝒊 െ 𝟏 𝒊 𝒏𝒊  𝟐𝒊  𝟏

(a)

(b)

Fig. 6. Illustration for advections and marchings in one reinitialization cycle.
The blue arrows show the advection / marching trajectory for midpoint
velocities. The red arrows show marching trajectory for 𝒖𝑛 . (a) LFM (b)
NFM.

Algorithm 2 NFM Reinitialization Cycle
Input: 𝒖0
Output: 𝒖𝑛
1: 𝚽0,0 ← id, F0,0 ← 𝑰 ;
2: for 𝑖 = 1 to 𝑛 do
3: 𝚿𝑖−1/2,𝑖−1, T𝑖−1/2,𝑖−1 ← RK4-March(id, 𝑰 , 𝒖𝑖−1,−Δ𝑡/2);
4: 𝒖𝑖−1/2 ← Project(T𝑇

𝑖−1/2,𝑖−1𝒖𝑖−1 (𝚿𝑖−1/2,𝑖−1));
5: Store 𝒖𝑖−1/2 in buffer; ⊲ midpoint method
6: 𝚽0,𝑖 , F0,𝑖 ← RK4-March(𝚽0,𝑖−1, F0,𝑖−1, 𝒖𝑖−1/2,Δ𝑡);
7: 𝚿𝑖,𝑖 ← id, T𝑖,𝑖 ← 𝑰 ;
8: for 𝑗 = 𝑖 to 1 do
9: 𝚿𝑖, 𝑗−1, T𝑖, 𝑗−1 ← RK4-March(𝚿𝑖, 𝑗 , T𝑖, 𝑗 , 𝒖 𝑗−1/2,−Δ𝑡)
10: end for
11: 𝒎𝑖 ← T𝑇

𝑖,0𝒖0 (𝚿𝑖,0);
12: �̂�0 ← F𝑇

0,𝑖𝒎𝑖 (𝚽0,𝑖 );
13: 𝒆 ← (�̂�0 − 𝒖0)/2; ⊲ roundtrip error
14: 𝒎𝑖 ← 𝒎𝑖 − T𝑇

𝑖,0𝒆(𝚿𝑖,0) ⊲ error compensation
15: 𝒎𝑖 ← Clamp(𝒎𝑖 ) ⊲ optional
16: 𝒖𝑖 ← Project(𝒎𝑖 );
17: end for

is computationally more expensive than advection because it in-
volves additional calculations, such as evaluating velocity gradients
and updating flow map Jacobians.

In a reinitialization cycle, LFM reduces the number of projections
by nearly half compared to NFM. While the number of marching
steps in NFM grows quadratically with 𝑛, the advection and march-
ing steps in LFM scale linearly with 𝑛. As illustrated in Fig. 6, LFM
requires significantly fewer advection and marching steps than NFM
within a reinitialization cycle. For the longest reinitialization length
of 𝑛 = 20 used by NFM, NFM requires 250 marching steps per dimen-
sion, whereas LFM only needs 20 advection steps and 40 marching
steps per dimension—a reduction over 76%.

4.4 Viscosity and External Force
Another limitation of NFM is its inability to simulate real fluids influ-
enced by viscosity and external forces. When viscosity and external
forces affect fluid motion, the impulse cannot be directly projected
onto velocity due to the appearance of an additional term in the
difference between impulse and velocity (as shown in Equation (5)).
To address this, the additional term must be evaluated and added

Fig. 7. Trefoil. A trefoil knot breaks into a large vortex and a small vortex.

(a) (b) (c)

Fig. 8. Kármán Vortex Street. A periodic pattern of alternating vortices is
shed from opposite sides of an obstacle in the incoming flow. (a) Re=20 (b)
Re=200 (c) Re=2000.

to the impulse before performing the projection. This extra term
represents the path integral of viscous and external forces along
the trajectory of a virtual fluid particle, which can be seamlessly
integrated into the marching process of the forward flow map. Note
that

𝑿 = 𝚿𝑡,0 (𝒙),𝚿𝑡,𝜏 (𝒙) = 𝚽0,𝜏 (𝑿 ) . (7)
We select the midpoints as quadrature points for the path integral

1
𝜌

∫ 𝑡

0
F𝑇
0,𝜏 (𝑿 )

(
𝜇∇2𝒖𝜏 + 𝒇𝜏

)
(𝚿𝑡,𝜏 (𝒙))d𝜏

≈
𝑛−1∑︁
𝑖=0

Δ𝑡

𝜌
F𝑇
0,𝑖+1/2 (𝑿 )

(
𝜇∇2𝒖𝑖+1/2 + 𝒇𝑖+1/2

)
(𝚽0,𝑖+1/2 (𝑿 )) .

(8)

During the calculation of midpoint velocities, we employ the central
difference method to compute the viscous force. Additionally, the
forward flow map is marched, and the path integral is performed.
𝚽0,𝑖+1/2 and F𝑇

0,𝑖+1/2 were reused from the temporary variables in
the RK4 Marching from 𝚽0,𝑖 to 𝚽0,𝑖+1, which do not lead to extra
overhead. We accumulate the force terms to the initial velocity,
which is subsequently multiplied by T𝑇

𝑛,0 in the pullback operation.

5 Matrix-Free AMGPCG solver on GPU

5.1 Matrix-Free UAAMG
We number the multigrid levels from fine to coarse. The equation
for the 𝑙 th level is:

𝐴𝑙𝑥𝑙 = 𝑏𝑙 . (9)
Starting with zero initial guess, smoothing yields a solution denoted
as 𝑥𝑜𝑙𝑑

𝑙
. Smoothing effectively eliminates the high-frequency com-

ponents of the error, while the low-frequency components are more

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



Leapfrog Flow Maps for Real-Time Fluid Simulation • 7

Algorithm 3 V-Cycle

Input: 𝑙, 𝑏𝑙
Output: 𝒙𝑙
1: 𝑥𝑙 ← 0; ⊲ start with zero initial guess
2: if 𝑙 == nLevel − 1 then ⊲ coarsest level
3: multiple RBGS to 𝐴𝑙𝑥𝑙 = 𝑏𝑙 ;
4: return 𝑥𝑙 ;
5: end if
6: one RBGS to 𝐴𝑙𝑥𝑙 = 𝑏𝑙 ; ⊲ pre-smooth
7: 𝑏𝑙+1 ← 𝑅𝑙 (𝑏𝑙 −𝐴𝑙𝑥𝑙 ) ⊲ calculate residual and restrict
8: 𝑥𝑙+1 ← V-Cycle(𝑙 + 1, 𝑏𝑙+1)
9: 𝑥𝑙 ← 𝑥𝑙 + 2𝑃𝑙𝑥𝑙+1 ⊲ prolongate with scaling
10: one RBGS to 𝐴𝑙𝑥𝑙 = 𝑏𝑙 ; ⊲ post-smooth
11: return 𝑥𝑙 ;

efficiently reduced at the coarse level. The residual for the current
solution is restricted to the coarse level as the right-hand side:

𝐴𝑙+1𝑥𝑙+1 = 𝑏𝑙+1 = 𝑅𝑙 (𝑏𝑙 −𝐴𝑙𝑥
old
𝑙
). (10)

The coarse level solution is then prolonged to the fine level:

𝑥new
𝑙

= 𝑥old
𝑙
+ 2𝑃𝑙𝑥𝑙+1 . (11)

Since UAAMG is used as a preconditioner for the Conjugate Gra-
dient method, scaling the prolongated value by 2 improves the
convergence rate[Stüben 2001].
In algebraic multigrid, the matrices 𝐴𝑙 and 𝐴𝑙+1 satisfy an alge-

braic relationship determined by the restriction and prolongation
operators, following the Galerkin principle:

𝐴𝑙+1 = 𝑅𝑙𝐴𝑙𝑃𝑙 . (12)

For the Poisson equation, the coefficient matrix at the finest level
can be readily represented in matrix-free form, as each degree of
freedom (DoF) only interacts with its neighboring DoF on the grid.
When applying 8-to-1 restriction and constant prolongation, this
property is preserved across the coarse levels. Consequently, the
coefficient matrix at the coarse levels can also be expressed inmatrix-
free form, enabling coarsening to be performed in a fully matrix-free
manner [Shao et al. 2022].

5.2 Data Structure
The variables and matrix coefficients are stored on a grid using
a Structure of Arrays (SOA) layout. The matrix is represented by
five data channels: one Boolean channel indicating whether a voxel
corresponds to a degree of freedom (DoF), one floating-point channel
storing the diagonal coefficient, and three floating-point channels
representing the off-diagonal coefficients between a voxel and its
neighboring voxels in the positive directions of the three axes.

The grid is partitioned into 8 × 8 × 8 tiles. Within each tile, voxel
data for each channel is stored contiguously in memory to enhance
memory locality. The memory index of a voxel can be directly
computed from its Cartesian coordinates and the grid dimensions
using bitwise operations. The tile size is selected to align with the
shared memory capacity of modern GPUs and ensure it is a multiple
of the CUDA warp size.

5.3 Aggregated CUDA Kernels
The performance of AMGPCG is primarily constrained by memory
access rather than computational workload. To enhance perfor-
mance, both the volume and efficiency of memory access must be
optimized. In a typical sequence of CUDA kernels, the output of one
kernel often serves as the input to the next. By aggregating multiple
CUDA kernels into a single kernel at critical stages, the number of
read and write operations to global memory can be significantly
reduced, thereby improving memory efficiency.

As shown in Algorithm 3, we employ a V-Cycle multigrid method
with a Red-BlackGauss-Seidel (RBGS) smoother, where the smoother
contributes to a significant portion of the computational time. Naively,
executing one RBGS iteration requires two separate kernels: one
for the red phase and another for the black phase. Additionally,
during the downstroke, an extra kernel is needed to restrict the
residual. By aggregating these kernels into a single unified kernel,
we can effectively reduce the total memory access volume, thereby
improving performance.
One challenge here is the data dependency between different

stages. These dependencies can be described using the Manhat-
tan distance on the grid. For two voxels 𝑎1 = (𝑖1, 𝑗1, 𝑘1) and 𝑎2 =

(𝑖2, 𝑗2, 𝑘2), the Manhattan distance between them is defined as

𝑀 (𝑎1, 𝑎2) = |𝑖1 − 𝑖2 | + | 𝑗1 − 𝑗2 | + |𝑘1 − 𝑘2 |. (13)

The Manhattan distance between a voxel 𝑎1 and a tile 𝑏2 is the
minimum of the Manhattan distance between 𝑎1 and the voxels
within the tile 𝑏2,

𝑀 (𝑎1, 𝑏2) = min
𝑎2∈𝑏2

𝑀 (𝑎1, 𝑎2). (14)

When a CUDA block calculates the residual and performs RBGS, it
requires the 𝑥𝑙 values not only for voxels within the corresponding
tile but also for voxels whose Manhattan distance from this tile
is 1. These dependent 𝑥𝑙 values must be updated in the previous
stage. To address this, we calculate the dependent 𝑥𝑙 values on the
fly during CUDA block execution and use shared memory to store
intermediate results, reducing global memory accesses.

Our aggregated kernel for RBGS and restriction operates in four
integrated stages. First, it computes the 𝑥𝑙 values for red voxels
whoseManhattan distance to the tile is less than 3, setting each value
as the quotient of the right-hand side and the diagonal coefficient.
Next, it performs Gauss-Seidel smoothing for black voxels whose
Manhattan distance to the tile is less than 2. Afterward, the residual
is calculated for voxels within the tile, and finally, the residual is
restricted to the coarser level, with the updated 𝑥𝑙 values written
back. This integrated approach minimizes memory access overhead
andmaximizes computational efficiency. Similarly, prolongation and
RBGS in the upstroke can be aggregated in an analogous manner,
further optimizing performance.

In each iteration of the conjugate gradient method, two dot prod-
ucts are required. We refer readers to [Shewchuk 1994] for details on
the preconditioned conjugate gradient algorithm. The element-wise
summation in the dot product can be efficiently parallelized using
the exclusive scan operation from NVIDIA’s CUB library [Iannario
et al. 2024], which can also be aggregated since the input arguments
for each dot product are already available in the previous CUDA

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



8 • Yuchen Sun, Junlin Li, Ruicheng Wang, Sinan Wang, Zhiqi Li, Bart G. van Bloemen Waanders, and Bo Zhu

Fig. 9. Delta Wing. A delta wing subjected to an inflow at an attack angle
of 20◦. Vortical structures are generated behind the wings.

NFM LFM Speedup

Marching 16.4 ms 4.8 ms 3.4×
Advection - 0.9 ms -
Pullback 2.5 ms 0.2 ms 12.5×

Error Correction 0.4 ms 0.03 ms 13.3×
Projection 102.5 ms 7.9 ms 13.0×

Flow Map Reset 0.7ms 0.06ms 11.7×
Operations for Smoke - 0.2 ms -

Total 122.5 ms 14.1 ms 8.7×

Table 3. Average time cost in one step of NFM and LFM in Leapfrog Vortex
Rings. Both NFM and LFM reinitialize every 10 steps. Time cost for one step
varies in a reinitalization cycle. Therefore, we report the average time cost.

kernel. In the previous CUDA kernel, each block can compute the
element-wise product of the two arguments and perform a block-
wise exclusive scan to sum the results. The summed result from each
block is then written to a buffer. After the kernel execution com-
pletes, a global exclusive scan is applied to this buffer to compute
the final result of the dot product. If a direct global multiplication
and exclusive scan were used for the dot product, the process would
involve reading one or two data channels for the multiplication, writ-
ing the intermediate result to a channel, and then reading it again
for the exclusive scan. By aggregating the blockwise dot product
computation into the previous CUDA kernel, we only need to read
a single value for each tile during the global exclusive scan, which
incurs negligible memory overhead. This optimization reduces the
memory access volume by seven data channels per iteration of the
conjugate gradient method, significantly improving performance.

5.4 Coefficients Trimming
In fluid simulation, only tiles adjacent to the boundary have non-
uniform matrix coefficients. Before solving the equation, a tile is
marked as trimmed if both the tile itself and all its neighboring tiles
have uniform coefficients. The neighboring tiles are included in the

(a) (b)

(c) (d)

Fig. 10. 2D Leapfrog Marathon. The vortex pairs simulated by LFM remain
separate after a round trip. (a) LFM (b) LFM without leapfrog method (c)
PFM (d) NFM

Figure Resolution 𝑛 CG Iter Runtime/Step Total Runtime

14 256 × 128 × 128 10 15 14.1 ms 28.2 s
3 128 × 256 × 256 5 8 22.5 ms 22.5 s
5 384 × 256 × 256 5 8 70.0 ms 105.0 s
2 256 × 256 × 256 5 8 40.7 ms 203.5 s
4 128 × 256 × 128 4 6 11.7 ms 14.0 s
7 128 × 128 × 128 5 6 5.6 ms 10.0 s
9 256 × 128 × 128 5 6 11.1 ms 20.0 s

Table 4. Statistics: Here, 𝑛 represents the number of steps in a reinitializa-
tion cycle. To avoid frequent interruptions of the CUDA stream for residual
checks on the host side, we use a fixed number of iterations for the Con-
jugate Gradient method. For real-time examples, the reported runtime
includes both simulation and rendering time. For non-real-time examples,
the runtime reflects only the simulation time.

evaluation because their coefficients are accessed during the RBGS
smoothing process. For a trimmed tile, default coefficient values
can be used, eliminating the need to read coefficients from global
memory during the equation-solving process.

6 Experiments
In this section, we present the performance test results for LFM
and our matrix-free AMGPCG solver on GPU, along with nine ex-
amples used to evaluate our method. Among these examples, Fire
Ball, Trefoil, and Delta Wing are simulated and rendered in real
time. The simulation results are passed to a ray-marching renderer
implemented in Vulkan via CUDA-Vulkan interoperation. The re-
maining 3D examples are rendered using Houdini. All experiments
were conducted on a desktop equipped with an NVIDIA RTX 4090.

6.1 Performance Analysis
6.1.1 LFM. We compare the time cost for NFM and LFM in Table
3. For this comparison, We tested the open-sourced implementation
of [Deng et al. 2023], with the neural buffer replaced with direct
memory storage to the global memory of GPU. Both NFM and LFM
reinitialize every 10 steps. On average, our LFM implementation is
3.4× faster than the NFM implementation in marching, 13.0× faster
in projection and 8.7× faster in total. The speed up is attributed to
fewer advection, marching and projection in each reinitialization
cycle and our fast matrix-free AMGPCG solver. In addition, while
NFM requires pullback, error correction and flow map reset at every
step, LFM performs these operations only during reinitialization.
We also present the runtime of LFM for each example in Table 4.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



Leapfrog Flow Maps for Real-Time Fluid Simulation • 9

Fig. 11. Relative error of the linear solver for 3D Leapfrog andWind Turbine.

0

0.3

0.6

0.9

1.2

1.5

RBGS+Restriction RBGS+Prolongation

Aggregate+Trim Aggregate Separatems

Fig. 12. Time cost on the finest level of multigrid

6.1.2 AMGPCG solver.

Convergence. While GeometricMultigrid relies on boundary smooth-
ing to improve the convergence rate when solid obstacles appear
in the domain [McAdams et al. 2010], Algebraic Multigrid does not
encounter such difficulties due to its adherence to the Galerkin prin-
ciple. In Figure 11, we illustrate the convergence of our AMGPCG
solver for two 3D examples: Leapfrog andWind Turbine. The former
represents a uniform domain, while the latter involves a domain
with a solid obstacle. The multigrid levels are selected such that
the smallest dimension of the coarsest grid is 8. Additionally, we
perform 10 RBGS smoothing steps on the coarsest level.

Aggregated kernels and data trimming. We evaluate the perfor-
mance improvements from aggregated kernels and data trimming
on a 256 × 256 × 256 grid with a surrounding solid boundary (pure
Neumann). Figure 12 illustrates the time cost for RBGS+Restriction
and RBGS+Prolongation on the finest level. These operations domi-
nate the computational time of a single V-Cycle, as the voxel number

2.78 ms

0.58 ms

0.63 ms

0.47 ms

0.23 ms

V-Cycle
Dot
Axpy
Mat-Vec Mul
Recenter

0.81 ms

0.01 ms

0.63 ms

0.22 ms

0.23 ms

(a) (b)

Fig. 13. Time breakdown of one CG iteration for a 256 × 256 × 256 domain.
(a) Separate kernels. (b) Aggregated kernels with data trimming.

Resolution 1283 2563 5123

# Iterations

[Shao et al. 2022] 4 4 4
Ours

(Separate) 14 15 16

Ours
(Aggregate + Trim) 14 15 16

Build Time (ms)

[Shao et al. 2022] 15.4 69.1 556
Ours

(Separate) 0.073 0.493 3.44

Ours
(Aggregate + Trim) 0.153 0.906 6.78

Solve Time (ms)

[Shao et al. 2022] 51.2 510 4531
Ours

(Separate) 5.61 70.4 610

Ours
(Aggregate + Trim) 3.45 28.6 216

Table 5. We compare our solver with aggregated kernels and trimming,
our solver with separate kernels and the SIMD UAAMG solver [Shao et al.
2022]. We report the number of iterations towards convergence, the time for
building the multigrid hierachy and the time for solving the linear system.
The convergence criterion is set to a relative error of 10−6 for all methods.
The SIMD UAAMG solver [Shao et al. 2022] runs on a 13th Gen Intel(R)
Core(TM) i9-13900F, and our solver runs on an Nvidia RTX 4090.

of each level forms a geometric sequence with a common ratio of 1
8 .

Aggregated kernels gives 2× speed up compared to separate kernels,
and data trimming gives a 2× speed up on top of that. Figure 13
presents the time breakdown for a single CG iteration. Because of
the pure Neumann boundary, recentering is required in each CG it-
eration. Aggregated kernels and data trimming reduce the execution
time of one V-Cycle from 2.78 ms to 0.81𝑚𝑠 . Furthermore, aggregat-
ing the blockwise dot product into a preceding kernel effectively
eliminates the time cost for the dot product. Since the operations
preceding the dot product are memory-bound, the computational
workload introduced by the blockwise exclusive scan does not add
extra time. Additionally, the global exclusive scan, used to sum the
results from each block, incurs minimal overhead.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



10 • Yuchen Sun, Junlin Li, Ruicheng Wang, Sinan Wang, Zhiqi Li, Bart G. van Bloemen Waanders, and Bo Zhu

(a) (b) (c) (d) (e)

Fig. 14. Leapfrog Vortex Rings. The vortex rings simulated by LFM and NFM remain separated after 4 leaps. (a) LFM (b) NFM (c) PFM (d) Covector (e) BiMocq2.

Fig. 15. Relative error of the SIMD UAAMG solver [Shao et al. 2022] and
ours at different resolutions.

Comparison. We compare the convergence and performance of
three configurations: our solver with aggregated kernels and data
trimming, our solver without aggregated kernels and data trimming,
and the SIMD UAAMG solver [Shao et al. 2022]. In the test scene,
we set up cubic fluid tanks at different resolutions with Neumann
boundary conditions. The right-hand side is constructed by adding
uniform random noise (ranging from -1 to 0) to the normalized grid
cell indices (ranging from 0 to 1), introducing both long-wavelength
and short-wavelength errors. The convergence curves are plotted in
Figure 15, and the performance statistics are shown in Table 5. Since
aggregated kernels and trimming do not affect the convergence be-
havior of our solver, we present only one set of convergence curves
for it. The SIMD UAAMG solver [Shao et al. 2022] achieves faster
convergence than our solver, as it employs a W-cycle multigrid
scheme with three pre-smoothings and post-smoothings, while our
solver uses a V-cycle multigrid scheme with only one pre-smoothing
and post-smoothing. Although the first scheme requires fewer it-
erations to converge, each iteration incurs more than three times
the computational cost compared with the second scheme. Data
trimming introduces some overhead during the construction of
the multigrid hierarchy but accelerates the solve time. With aggre-
gated kernels and data trimming, our solver achieves a 14.8× to
21.0× speedup in solving the linear system compared with the SIMD
UAAMG solver [Shao et al. 2022].

6.2 Examples
2D Leapfrog. Figure 10 illustrates the classical 2D leapfrog test.

Initially, two pairs of vortices are positioned on the left side of the do-
main. In a non-viscious setting, the vortex pairs should leap through
each other and never merges. We compare LFM with NFM and PFM
[Zhou et al. 2024] in this experiment. All methods reinitialize every
10 steps. After the vortex pairs reach the right boundary and bounce
back, the vortex pairs simulated by NFM and PFM merged with
each other. We also conduct an ablation study in this experiment.
We replaced the leapfrog method in LFM with directly advecting
the midpoint velocities sequentially. The modified method can not
preserve the vortex pairs well.

Kármán Vortex Street. By incorporating viscosity through the path
integral during forward marching, LFM is capable of simulating
the Kármán vortex street phenomenon across various Reynolds
numbers. The results are shown in Figure 8.

Leapfrog Vortex Rings. Figure 14 shows the leapfrogging behavior
of two vortex rings. We compare LFM with NFM, PFM [Zhou et al.
2024], Covector Fluids [Nabizadeh et al. 2022] and BiMocq2 [Qu
et al. 2019]. All methods reinitialize every 10 steps. The vortex rings
simulated by LFM and NFM merge after 5 leaps, 4 for PFM, 3 for
Covector Fluids and 2 for BiMocq2. These results demonstrate that
our method achieves vortex preservation comparable to NFM.

Head-on Vortex Rings Collision. Figure 3 shows the head-on colli-
sion of two vortex rings. The two vortex rings initially have opposite
vorticities and begin to approach each other. After collision, sec-
ondary vortex filaments are generated.

Vortex Rings Connection. Figure 5 shows that two vortex rings
deform and connect with each other. A smaller vortex ring then
separates off because of the fluctuation on the merged ring.

Wind Turbine. Figure 2 shows the vorticity field of a rotating
wind turbine in an inlet. The wind turbine rotates with a constant
angular velocity and a helical trail is created behind it.

Fire Ball. Figure 4 shows the real-time simulation and rendering
results a fire ball. Our method captures the vortical flames generated
by the uneven temperature distribution of the fire ball.

Trefoil. As shown in Figure 7, we simulate and render a trefoil
knot in a real-time speed. The knot structure correctly breaks into
one large vortex and another small vortex.

Delta Wing. Figure 9 illustrates the vorticity generated by a delta
wing subjected to an inflow at an attack angle of 20◦. This example is
simulated and rendered in real time, allowing interactive adjustment
of the attack angle by modifying the inflow direction.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



Leapfrog Flow Maps for Real-Time Fluid Simulation • 11

7 Discussion and future work
In summary, we present Leapfrog FlowMaps (LFM), a hybrid velocity-
impulse time integrator that achieves significantly lower compu-
tational workload compared to NFM while producing comparable
results. Leveraging a highly optimized matrix-free Algebraic Multi-
grid Preconditioned Conjugate Gradient (AMGPCG) solver on GPU,
our method is capable of simulating vortical phenomena in real time
at a resolution of 256 × 128 × 128 and simulating higher-resolution
examples at a near-real-time rate.
Although our method is computationally efficient, its memory

consumption can still be improved. Similar to NFM, LFM requires a
buffer to store the velocity history for backward marching, which
can lead to memory limitations for large simulation domains. We
consider better quantization a promising technique for compress-
ing the velocity buffer’s memory overhead without substantially
compromising performance in future work. In addition, integrating
more complicated physics interactions, such as solid-fluid inter-
action with a particular focus on vortex-object interaction, will
broaden the scope of the current method in accommodating real-
time fluid applications.

Acknowledgements
We express our gratitude to the anonymous reviewers for their
insightful feedback. Georgia Tech authors acknowledge NSF IIS
#2433322, ECCS #2318814, CAREER #2420319, IIS #2433307, OISE
#2433313, and CNS #1919647 for funding support. We credit the
Houdini education license for video animations.

Sandia National Laboratories is a multi-mission laboratory man-
aged and operated by National Technology & Engineering Solutions
of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration (DOE/NNSA) under contract DE-
NA0003525. This writtenwork is authored by an employee of NTESS.
The employee, not NTESS, owns the right, title and interest in and
to the written work and is responsible for its contents. Any sub-
jective views or opinions that might be expressed in the written
work do not necessarily represent the views of the U.S. Government.
The publisher acknowledges that the U.S. Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this written work or allow others
to do so, for U.S. Government purposes. The DOEwill provide public
access to results of federally sponsored research in accordance with
the DOE Public Access Plan.

References
Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty, and Eftychios Sifakis.

2017. Power diagrams and sparse paged grids for high resolution adaptive liquids.
ACM Trans. Graph. 36, 4 (2017).

Ryoichi Ando and Christopher Batty. 2020. A practical octree liquid simulator with
adaptive surface resolution. ACM Trans. Graph. 39, 4 (2020).

Marsha J Berger and Joseph Oliger. 1984. Adaptive mesh refinement for hyperbolic
partial differential equations. J. Comput. Phys. 53, 3 (1984).

Massimo Bernaschi, Pasqua D’Ambra, and Dario Pasquini. 2020. AMG based on com-
patible weighted matching for GPUs. Parallel Comput. 92 (2020), 102599.

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. 2003. Sparse matrix solvers
on the GPU: conjugate gradients and multigrid. ACM Trans. Graph. 22, 3 (2003).

Thomas F. Buttke. 1992. Lagrangian numerical methodswhich preserve theHamiltonian
structure of incompressible fluid flow. (1992).

Thomas F. Buttke and Alexandre J. Chorin. 1993. Turbulence calculations in magneti-
zation variables. Applied numerical mathematics 12, 1-3 (1993), 47–54.

Duowen Chen, Zhiqi Li, Junwei Zhou, Fan Feng, Tao Du, and Bo Zhu. 2024. Solid-Fluid
Interaction on Particle Flow Maps. ACM Trans. Graph. 43, 6 (2024).

Nuttapong Chentanez and Matthias Müller. 2011. Real-time Eulerian water simulation
using a restricted tall cell grid. ACM Trans. Graph. 30, 4 (2011).

Ricardo Cortez. 1996. An impulse-based approximation of fluid motion due to boundary
forces. J. Comput. Phys. 123, 2 (1996), 341–353.

Qiaodong Cui, Pradeep Sen, and Theodore Kim. 2018. Scalable laplacian eigenfluids.
ACM Trans. Graph. 37, 4 (2018).

Yitong Deng, Hong-Xing Yu, Diyang Zhang, Jiajun Wu, and Bo Zhu. 2023. Fluid
Simulation on Neural Flow Maps. ACM Trans. Graph. 42, 6 (2023).

Fan Feng, Jinyuan Liu, Shiying Xiong, Shuqi Yang, Yaorui Zhang, and Bo Zhu. 2023.
Impulse Fluid Simulation. IEEE Transactions on Visualization and Computer Graphics
29, 6 (2023), 3081–3092.

Epic Games. 2024. Unreal Engine. version 5.5.
Ryan Goldade, Yipeng Wang, Mridul Aanjaneya, and Christopher Batty. 2019. An

adaptive variational finite difference framework for efficient symmetric octree
viscosity. ACM Trans. Graph. 38, 4 (2019).

Maria Iannario, Domenico Piccolo, and Rosaria Simone. 2024. CUB: A Class of Mixture
Models for Ordinal Data. https://CRAN.R-project.org/package=CUB R package
version 1.1.5.

Thomas Jakobsen. 2001. Advanced character physics. In Game Developers Conference
Proceedings (2001).

JangaFX. 2024. EmberGen. version 1.2.
Michael Lentine, Wen Zheng, and Ronald Fedkiw. 2010. A novel algorithm for in-

compressible flow using only a coarse grid projection. ACM Trans. Graph. 29, 4
(2010).

Wei Li, Yixin Chen, Mathieu Desbrun, Changxi Zheng, and Xiaopei Liu. 2020. Fast and
scalable turbulent flow simulation with two-way coupling. ACM Trans. Graph. 39, 4
(2020).

Wei Li, Yihui Ma, Xiaopei Liu, and Mathieu Desbrun. 2022. Efficient kinetic simulation
of two-phase flows. ACM Trans. Graph. 41, 4 (2022).

Zhiqi Li, Barnabás Börcsök, Duowen Chen, Yutong Sun, Bo Zhu, and Greg Turk. 2024a.
Lagrangian Covector Fluid with Free Surface. In ACM SIGGRAPH 2024 Conference
Papers. Article 43, 10 pages.

Zhiqi Li, Duowen Chen, Candong Lin, Jinyuan Liu, and Bo Zhu. 2024b. Particle-Laden
Fluid on Flow Maps. ACM Trans. Graph. 43, 6 (2024).

Haixiang Liu, NathanMitchell, Mridul Aanjaneya, and Eftychios Sifakis. 2016. A scalable
schur-complement fluids solver for heterogeneous compute platforms. ACM Trans.
Graph. 35, 6 (2016).

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water and smoke
with an octree data structure. ACM Trans. Graph. 23, 3 (2004).

Chaoyang Lyu, Kai Bai, Yiheng Wu, Mathieu Desbrun, Changxi Zheng, and Xiaopei
Liu. 2023. Building a Virtual Weakly-Compressible Wind Tunnel Testing Facility.
ACM Trans. Graph. 42, 4 (2023).

Chaoyang Lyu, Wei Li, Mathieu Desbrun, and Xiaopei Liu. 2021. Fast and versatile
fluid-solid coupling for turbulent flow simulation. ACM Trans. Graph. 40, 6 (2021).

A. McAdams, E. Sifakis, and J. Teran. 2010. A parallel multigrid Poisson solver for fluids
simulation on large grids. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. 65–74.

Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM
Trans. Graph. 32, 3 (2013).

Mohammad Sina Nabizadeh, Ritoban Roy-Chowdhury, Hang Yin, Ravi Ramamoorthi,
and Albert Chern. 2024. Fluid Implicit Particles on Coadjoint Orbits. ACM Trans.
Graph. 43, 6 (2024).

Mohammad Sina Nabizadeh, Stephanie Wang, Ravi Ramamoorthi, and Albert Chern.
2022. Covector fluids. ACM Trans. Graph. 41, 4 (2022), 16 pages.

M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton, S. Layton, N.
Markovskiy, I. Reguly, N. Sakharnykh, V. Sellappan, and R. Strzodka. 2015. AmgX:
A Library for GPU Accelerated Algebraic Multigrid and Preconditioned Iterative
Methods. SIAM J. Sci. Comput. (2015), S602–S626.

Valery Iustinovich Oseledets. 1989. On a newway of writing the Navier-Stokes equation.
The Hamiltonian formalism. Russ. Math. Surveys 44 (1989), 210–211.

Ziyin Qu, Xinxin Zhang, Ming Gao, Chenfanfu Jiang, and Baoquan Chen. 2019. Efficient
and conservative fluids using bidirectional mapping. ACM Trans. Graph. 38, 4 (2019).

Amir Hossein Rabbani, Jean-Philippe Guertin, Damien Rioux-Lavoie, Arnaud Schoent-
gen, Kaitai Tong, Alexandre Sirois-Vigneux, and Derek Nowrouzezahrai. 2022. Com-
pact Poisson Filters for Fast Fluid Simulation. In ACM SIGGRAPH 2022 Conference
Proceedings (SIGGRAPH ’22). Article 35.

John W. Ruge and Klaus Stüben. 1987. Algebraic Multigrid. InMultigrid Methods. SIAM,
73–130.

Sergio Sancho, Jingwei Tang, Christopher Batty, and Vinicius C. Azevedo. 2024. The
Impulse Particle-In-Cell Method. Computer Graphics Forum (2024), e15022.

Robert Saye. 2016. Interfacial gauge methods for incompressible fluid dynamics. Science
advances 2, 6 (2016), e1501869.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://CRAN.R-project.org/package=CUB


12 • Yuchen Sun, Junlin Li, Ruicheng Wang, Sinan Wang, Zhiqi Li, Bart G. van Bloemen Waanders, and Bo Zhu

Robert Saye. 2017. Implicit mesh discontinuous Galerkin methods and interfacial gauge
methods for high-order accurate interface dynamics, with applications to surface
tension dynamics, rigid body fluid–structure interaction, and free surface flow: Part
I. J. Comput. Phys. 344 (2017), 647–682.

Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A vortex particle method for
smoke, water and explosions. ACM Trans. Graph. 24, 3 (2005).

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
a sparse paged grid structure applied to adaptive smoke simulation. ACM Trans.
Graph. 33, 6 (2014).

Han Shao, Libo Huang, and Dominik L. Michels. 2022. A fast unsmoothed aggregation
algebraic multigrid framework for the large-scale simulation of incompressible flow.
ACM Trans. Graph. 41, 4 (2022).

Jonathan R Shewchuk. 1994. An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain. Technical Report. USA.

Jos Stam. 1999a. Stable fluids. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’99). 121–128.

Jos Stam. 1999b. Stable fluids. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’99). 121–128.

Klaus Stüben. 2001. A review of algebraic multigrid. J. Comput. Appl. Math. 128, 1
(2001), 281–309. Numerical Analysis 2000. Vol. VII: Partial Differential Equations.

D.M. Summers. 2000. A Representation of Bounded Viscous Flow Based on Hodge
Decomposition of Wall Impulse. J. Comput. Phys. 158, 1 (2000), 28–50.

Yuchen Sun, Linglai Chen, Weiyuan Zeng, Tao Du, Shiying Xiong, and Bo Zhu. 2024.
An Impulse Ghost Fluid Method for Simulating Two-Phase Flows. ACM Trans.
Graph. 43, 6 (2024).

Tetsuya Takahashi and Christopher Batty. 2023. A Multilevel Active-Set Preconditioner
for Box-Constrained Pressure Poisson Solvers. Proc. ACM Comput. Graph. Interact.
Tech. 6, 3 (2023).

Tetsuya Takahashi and Christopher Batty. 2025. A Primal-Dual Box-Constrained QP
Pressure Poisson Solver With Topology-Aware Geometry-Inspired Aggregation
AMG. IEEE Transactions on Visualization and Computer Graphics 31, 4 (2025).

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. 2017.
Accelerating eulerian fluid simulation with convolutional networks. In Proceedings
of the 34th International Conference on Machine Learning - Volume 70 (ICML’17).
3424–3433.

E Weinan and Jian-Guo Liu. 1997. Finite difference schemes for incompressible flows
in the velocity–impulse density formulation. J. Comput. Phys. 130, 1 (1997), 67–76.

E Weinan and Jian-Guo Liu. 2003. Gauge method for viscous incompressible flows.
Communications in Mathematical Sciences 1, 2 (2003), 317–332.

Kui Wu, Nghia Truong, Cem Yuksel, and Rama Hoetzlein. 2018. Fast Fluid Simula-
tions with Sparse Volumes on the GPU. Computer Graphics Forum (Proceedings of
EUROGRAPHICS 2018) 37, 2 (2018).

Cheng Yang, Xubo Yang, and Xiangyun Xiao. 2016. Data-driven projection method in
fluid simulation. Comput. Animat. Virtual Worlds 27, 3–4 (2016).

Shuqi Yang, Shiying Xiong, Yaorui Zhang, Fan Feng, Jinyuan Liu, and Bo Zhu. 2021.
Clebsch gauge fluid. ACM Trans. Graph. 40, 4 (2021).

Omar Zarifi. 2020. Sparse Smoke Simulations in Houdini. In ACM SIGGRAPH 2020
Talks. Article 3.

Junwei Zhou, Duowen Chen, Molin Deng, Yitong Deng, Yuchen Sun, Sinan Wang,
Shiying Xiong, and Bo Zhu. 2024. Eulerian-Lagrangian Fluid Simulation on Particle
Flow Maps. ACM Trans. Graph. 43, 4 (2024).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.


	Abstract
	1 Introduction
	2 Related Work
	3 Physical Model
	4 Leapfrog Flow Maps
	4.1 Reinitialization Cycle
	4.2 Leapfrog Method for Midpoint Velocity
	4.3 Comparison with NFM
	4.4 Viscosity and External Force

	5 Matrix-Free AMGPCG solver on GPU
	5.1 Matrix-Free UAAMG
	5.2 Data Structure
	5.3 Aggregated CUDA Kernels
	5.4 Coefficients Trimming

	6 Experiments
	6.1 Performance Analysis
	6.2 Examples

	7 Discussion and future work
	References

