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Fig. 1. Our Impulse Ghost Fluid Method preserves vortical structures and fluid volume across a broad spectrum of two-phase vortical flow simulations. We
present four illustrative snapshots from simulations utilizing this method: a swinging fishtail viewed from above (left), rising bubbles in a tank (middle left), a
rising bubble ring hitting the liquid-air interface (middle right) and a pair of leapfrogging bubble rings (right).

This paper introduces a two-phase interfacial fluid model based on the
impulse variable to capture complex vorticity-interface interactions. Our
key idea is to leverage bidirectional flowmap theory to enhance the transport
accuracy of both vorticity and interfaces simultaneously and address their
coupling within a unified Eulerian framework. At the heart of our framework
is an impulse ghost fluid method to solve the two-phase incompressible fluid
characterized by its interfacial dynamics. To deal with the history-dependent
jump of gauge variables across a dynamic interface, we develop a novel path
integral formula empowered by spatiotemporal buffers to convert the history-
dependent jump condition into a geometry-dependent jump condition when
projecting impulse to velocity. We demonstrate the efficacy of our approach
in simulating and visualizing several interface-vorticity interaction problems
with cross-phase vortical evolution, including interfacial whirlpool, vortex
ring reflection, and leapfrogging bubble rings.
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1 INTRODUCTION
Various two-phase flow phenomena manifest complex interactions
between vorticity and interfaces, exemplified by cavitation bubble
flow, toroidal bubble ring, cross-interface swimming, etc. Accurately
simulating these phenomena requires capturing the long-term evolu-
tion of both vortical structures and interface features in a two-phase
setting. Specifically, such captures should consider the phase change
and jump conditions on a dynamically evolving surface separating
water and air. Traditional fluid simulators discretized on an Eulerian
grid face numerical dissipation when transporting vorticity and
interfaces, evidenced by the volume loss of small bubbles and the
dissipated vortical structures, hampering both the physical fidelity
and the visual appearance of the simulation of these flow phenom-
ena. Typically, auxiliary data structures such as particles [Patkar
et al. 2013] are necessary to preserve these flow details, particularly
in a turbulent setting.

Impulse-based methods have emerged in computer graphics and
computational physics as a promising solution for solving incom-
pressible flow systems exhibiting complex vortical evolution (e.g.,
see [Deng et al. 2023; Li et al. 2024; Nabizadeh et al. 2022; Zhou et al.
2024]). Equipped with an accurate, long-range flow map established
across a time interval, impulse (covector) can be geometrically trans-
ported with this map along with its Jacobian. The combination of
impulse and flow maps naturally preserves and develops complex
vortical structures and achieves impressive results regarding their
physical accuracy and visual complexity. However, most current
impulse-based schemes focus on solving incompressible flow with-
out a free surface (i.e., smoke simulation in graphics), and none of
the existing methods can tackle multi-phase fluid.

Themain challenge of employing impulse to simulate a two-phase
system lies in tackling the jump conditions on the interface. Due
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Fig. 2. A rotating fishtail in an inlet. Vorticity in two phases is visualized using different colormaps. Top: Top view. Bottom: Side view.

to the spatiotemporal nature of the gauge variable, the previously
geometry-dependent jump condition (e.g., surface tension due to
the local interfacial geometry) becomes history-dependent, which
needs to be converted into a path integral along the trajectory of
every virtual particle on the interface over the entire time inter-
val of its flow map. Directly calculating this integral for each grid
sample is impractical with an implicit interface representation such
as a level set. Moreover, due to the dynamic nature of the prob-
lem, calculating such an integral requires performing additional
inside/outside checks for each quadrature along the path according
to the interface’s position at each time instant, which affects the
accuracy and robustness of the entire solver due to the accumulated
numerical errors across the interface.

To address these challenges, this paper develops a novel Eulerian
framework to simulate two-phase flows under a flow-map perspec-
tive. We mainly address the challenge of tackling the spatiotemporal
jump conditions across a dynamic implicit interface with flow maps
by devising a novel framework named Impulse Ghost Fluid Method
(IGFM). To tackle the accumulated jump of the gauge variable across
a dynamic interface, we propose a novel scheme named Path Inte-
gral Projection. Leveraging spatiotemporal buffers and flow maps,
we use a path integral to calculate the history part of the gauge
variable and solve for the emerging part with a varying-coefficient
Poisson solver. The bidirectional flow map evolved in the process
can also be employed to accurately track the level set. As a result,
our framework achieves state-of-the-art transport accuracy of both
vorticity and interface simultaneously under a single flow map dis-
cretized on an Eulerian grid. We demonstrate the efficacy of our
approach by simulating a variety of two-phase vortical flow phe-
nomena, such as interfacial whirlpool, vortex ring reflection, and
leapfrogging bubble rings, with our particular focus on capturing
the cross-interface vortical structures that have played an essential
role in many cross-interface flow phenomena.
We summarize our main contributions as:
• A novel Impulse Ghost Fluid Method (IGFM) for simulating
two-phase fluid.
• A novel Path-Integral-Projection scheme to tackle the history-
dependent jump of gauge variable on an Eulerian grid.
• A novel Bidirectional-Marched-Flow-Map Level Set (BMFM-
LS) method to enhance volume preservation.

• A two-phase flow solver to capture complex cross-interface
vortex flow phenomena.

2 RELATED WORK
Two-phase Flows. In the graphics community, a popular approach

for simulating two-phase flows is the Ghost Fluid Method (GFM)
[Fedkiw et al. 1999]. This method employs a level set to track the
interface and sharply captures the discontinuous jump in fluid den-
sity at the liquid-air boundary. It enforces incompressibility for both
liquid and air through a pressure projection scheme. Hong and Kim
[2005] first adapted the method for graphics to simulate bubbles,
with a variety of work following. Mihalef et al. [2006] used Coupled
Level Set and Volume-Of-Fluid (CLSVOF) method [Sussman and
Puckett 2000] to address the volume loss of level set methods. A
volume control method was developed by Kim et al. [2007]. They
calculated a correction term according to volume error and applied it
to pressure projection. To capture small-scale droplets and bubbles,
Boyd and Bridson [2012] proposed MultiFLIP, combining GFM with
the Fluid Implicit Particle (FLIP) method [Brackbill and Ruppel 1986;
Zhu and Bridson 2005]. Besides these sharp-interface approaches,
Song et al. [2005] and Zheng et al. [2006] employed diffuse-interface
models where the fluid density is smoothly changing near the liquid-
air interface. Researchers also explored ways to simulate bubbles
without simulating the air part, such as stream function solver [Ando
et al. 2015] and constraint-based model [Goldade et al. 2020]. In re-
cent years, many works were also devoted to simulating two-phase
flows with kinetic solver [Li and Desbrun 2023; Li et al. 2021, 2022]
and mixture model [Yan and Ren 2023].

Gauge Methods. The concept of impulse was first introduced by
Buttke [1992]. It is defined by reformulating the incompressible
Navier-Stokes Equation with a gauge transformation [Buttke 1993;
Oseledets 1989; Roberts 1972]. After that, researchers in computa-
tional physics have explored various applications of impulse, such
as turbulence [Buttke and Chorin 1993], numeric stability [Weinan
and Liu 2003], and solid boundary treatment [Summers 2000]. In
the graphics community, Feng et al. [2023] developed an Eulerian
impulse-based gauge method for vortex flow simulations. Sancho
et al. [2024] developed a hybrid impulse method, extending APIC
[Jiang et al. 2015] with gauge transformation. Nabizadeh et al. [2022]
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Fig. 3. A vortex ring obliquely approaches the liquid-air interface, creating a bump on the interface before reflecting back.

and Deng et al. [2023] found that the combination of impulse and
flow maps significantly improves the preservation of vortical struc-
tures. While impulse demonstrates efficacy in smoke simulations,
the difficulty of liquid-air boundary treatment hinders its applica-
tion in two-phase flow simulations. The works of Saye [2016] and
Saye [2017] pioneered in this direction, but were limited to a simpli-
fied velocity-impulse density formulation [Weinan and Liu 1997].
Recently, Li et al. [2024] proposed using path integral on particles
to deal with the Dirichlet boundary condition of gauge variable.
This motivates us to tackle the jump condition of gauge variable
in two-phase flows by employing backward marched inverse flow
maps to perform path integral on an Eulerian grid.

Flow-map Methods. Beginning with the pioneering work of Wig-
gert and Wylie [1976], flow-map methods (also known as reference-
map methods or methods of characteristic mapping), have received
consistent attention. These methods reduce the frequency of inter-
polations by tracking fluid quantities with a long-range mapping,
thus diminishing numerical dissipation. Since Hachisuka [2005]
introduced the idea to graphics community, many studies have been
devoted to utilizing flow maps to increase the accuracy of velocity
advection and preserve vortical flow structures. Sato et al. [2017]
proposed backtracing a long-range flow map using semi-lagrangian
and integrating pressure gradient along the path to correct velocity.
Qu et al. [2019] developed a bidirectional mapping to better prevent
dissipation. Based on this, Nabizadeh et al. [2022] combined the
concept of flow map with the impulse fluid model [Cortez 1996]. In
Neural Flow Map (NFM) [Deng et al. 2023], the authors proposed
a neural buffer to memory-efficiently store intermediate velocity
fields used for backtracing flow maps with high precision. Besides
reducing numeric dissipation in velocity advection, recent work has
also explored using flow maps for accurate interface tracking. Bel-
lotti and Theillard [2019] leveraged flowmaps to reduce volume loss
in two-phase flow simulations, which is incurred by the numeric
error in the advection and reinitialization of the level set [Osher and
Sethian 1988]. Mercier et al. [2020] proposed combining flow maps
with a gradient augmentation interpolation scheme. To reduce the
volume loss incurred by reinitialization, Narita and Ando [2022]
employed tiled characteristic maps to replace global reinitialization
with local reinitialization. Li et al. [2023] developed an accurate
quasi-Newton method for reinitialization and built up a high-order
framework based on flow maps, which is named GARM-LS.

3 PHYSICAL MODEL

3.1 Two-Phase Flow
We take a sharp-interface model for two-phase flows, where the
fluid density exhibits a discontinuous jump at the liquid-air interface.
Liquid region and air region can be represented by a signed distance
field, which is denoted as 𝜑 :

𝜑 < 0, in the liquid region Ω𝐿, with density 𝜌𝐿,

𝜑 > 0, in the air region Ω𝐴, with density 𝜌𝐴,

𝜑 = 0, at the liquid-air interface 𝜕Ω.
(1)

The flow dynamics are governed by the Euler equations for inviscid,
incompressible fluid flow:

D𝒖
D𝑡

= − 1
𝜌
∇𝑝 + 𝒈, (2)

∇ · 𝒖 = 0, (3)
[𝑝]= 𝜎𝜅 on 𝜕Ω. (4)

Here 𝜎 is the surface tension coefficient, 𝜅 is the mean curvature,
and 𝒈 is the gravitational acceleration.

3.2 Flow Map
Consider fluid moving according to a spatiotemporal velocity field
𝒖 (𝒒, 𝜏) from time 0 to time 𝑡 . We use 𝑿 to denote the initial position
of a material point and use 𝒙 to denote the position of the material
point at time 𝑡 . The motion of the fluid in the time period can be
represented by forward flow map 𝝓, which is defined as:

𝜕𝝓 (𝑿 , 𝜏)
𝜕𝜏

= 𝒖 [𝝓 (𝑿 , 𝜏), 𝜏],

𝝓 (𝑿 , 0) = 𝑿 ,

𝝓 (𝑿 , 𝑡) = 𝒙 .

(5)

The inverse flow map 𝝍 is defined as the inverse mapping of the
forward flow map: 

𝝓 (𝝍 (𝒙, 𝜏), 𝜏) = 𝒙 .

𝝍 (𝒙, 0) = 𝒙,

𝝍 (𝒙, 𝑡) = 𝑿 .

(6)

The jacobians of 𝝓 and 𝝍 are represented by F and T, respec-
tively.

F (𝝓, 𝜏) = 𝜕𝝓 (𝑿 , 𝜏)
𝜕𝑿

, T (𝒙, 𝜏) = 𝜕𝝍 (𝒙, 𝜏)
𝜕𝒙

. (7)
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Fig. 4. Colliding bubble rings. The two bubble rings have opposite vorticity
at the beginning and then approach and collide with each other.

As proven in [Gonzalez and Stuart 2008], the temporal evolution of
F and T is given by the following equations:

DF

D𝑡
= ∇𝒖F, DT

D𝑡
= −T∇𝒖 . (8)

We define path integral operator L𝑏𝑎 , which maps a spatiotemporal
field 𝑓 to another spatiotemporal field L𝑏𝑎 𝑓 ,

(L𝑏𝑎 𝑓 ) (𝒙, 𝑡) =
∫ 𝑏

𝑎

𝑓 (𝝓 (𝝍 (𝒙, 𝑡), 𝜏), 𝜏)d𝜏 . (9)

Consider a material point 𝑟 which is located at 𝒙 at time 𝑡 . Its initial
position is 𝝍 (𝒙, 𝑡). From time 𝑎 to time 𝑏, 𝑟 moves from 𝝓 (𝝍 (𝒙, 𝑡), 𝑎)
to 𝝓 (𝝍 (𝒙, 𝑡), 𝑏). (L𝑏𝑎 𝑓 ) (𝒙, 𝑡) represents the integral of the 𝑓 value
on the material point 𝑟 over the time period.

3.3 Impulse Gauge Two-Phase Flow
For two-phase flows, impulse field 𝒎 is defined through a gauge
transformation

𝒎 = 𝒖 + 1
𝜌
∇𝛼. (10)

Here 𝛼 is chosen such that (1)𝒎 is initially equivalent to 𝒖, (2) the
material derivative of 𝒎 equals to a stretching term[Cortez 1996],

𝒎(𝒙, 0) = 𝒖 (𝒙, 0),
𝐷𝒎

𝐷𝑡
= −(∇𝒖)𝑇𝒎.

(11)

Note that the evolution of 𝒖 and 𝒎 are deterministic, thus ∇𝛼 is
unique, making the feasible solutions of 𝛼 only vary by a constant.
We derive that (in section A)

𝛼 (𝒙, 𝑡) =
(
L𝑡
0 (𝑝 −

1
2
𝜌 |𝒖 |2 + 𝜌𝐺)

)
(𝒙, 𝑡) (12)

makes 𝒎 satisfy Equation (11). Here 𝐺 denotes the gravitational
potential, which gives

𝒈 = −∇𝐺. (13)
Across the liquid-air interface, 𝛼 has a history-dependent jump,

[𝛼] = L𝑡
0 (𝜎𝜅) + (𝜌𝐴 − 𝜌𝐿) · (L

𝑡
0𝐺 −

1
2
L𝑡
0 |𝒖 |

2) on 𝜕Ω. (14)

The jump of 𝛼 at interface [𝛼] is the difference between the
unilateral limit of 𝛼 on the air region and the unilateral limit on the
liquid region. At time 𝑡 , consider an interfacial point 𝒙𝐼 , an air point
𝒙𝐴 , and a liquid point 𝒙𝐿 . 𝒙𝐴 and 𝒙𝐿 are infinitely close to 𝒙𝐼 , and
[𝛼] (𝒙𝐼 , 𝑡) can be regarded as the difference between 𝛼 (𝒙𝐴, 𝑡) and
𝛼 (𝒙𝐿, 𝑡),

[𝛼] (𝒙𝐼 , 𝑡) = 𝛼 (𝒙𝐴, 𝑡) − 𝛼 (𝒙𝐿, 𝑡) . (15)

Fig. 5. Leapfrogging bubble rings. Initially, the two bubble rings have aligned
vorticity. Induced flow makes them pass through each other repeatedly.

Consider material points 𝑟 𝐼 , 𝑟𝐴 , 𝑟𝐿 moving in the flow field. At
time 𝑡 , 𝑟 𝐼 , 𝑟𝐴 , 𝑟𝐿 are located at 𝒙𝐼 , 𝒙𝐴 , 𝒙𝐿 respectively. Because 𝑡
is finite, the distance between 𝑟𝐴 and 𝑟 𝐼 , and the distance between
𝑟𝐿 and 𝑟 𝐼 are still infinitely small in the time period from 0 to 𝑡 .
Therefore, at each time point, the difference between a physical
quantity on 𝑟𝐴 and 𝑟𝐿 equals to the jump of the physical quantity
on 𝑟 𝐼 . Furthermore, the difference between the temporal integral of
a physical quantity on 𝑟𝐴 and 𝑟𝐿 equals to the temporal integral of
the physical quantity’s jump on 𝑟 𝐼 . Thus,

𝛼 (𝒙𝐴, 𝑡) − 𝛼 (𝒙𝐿, 𝑡) =
(
L𝑡
0 ( [𝑝] −

1
2
[𝜌] |𝒖 |2 + [𝜌]𝐺)

)
(𝑥 𝐼 , 𝑡). (16)

And equation (14) can be obtained.

4 IMPULSE GHOST FLUID METHOD
A traditional velocity-based solver comprises two primary compo-
nents: advection and projection. In advection, the velocity field is
transported through a frozen background velocity field. In projec-
tion, the advected velocity field is made divergence-free by solving
a Poisson equation. Similarly, an impulse-based solver updates the
impulse to the current time, followed by projecting this impulse
onto a divergence-free velocity field. As the mathematical form of
the gauge transformation suggests, this projection is also equiva-
lent to solving a Poisson equation. To avoid the problem that the
distance between impulse and velocity keeps increasing and causes
numeric instability at some point, the impulse is periodically reset to
velocity, with the reset time selected as a new zero point (i.e. 𝑡 = 0).
We denote this scheme as the reinitialization of impulse, which is
commonly used in impulse-based methods.

4.1 Pullback and Backward March
A merit of impulse lies in its purely geometric evolution, which
enables the reconstruction of impulse from the initial conditions
and flow maps with the pullback operator [Nabizadeh et al. 2022].
By utilizing (8) and (11), one can derive

𝒎(𝒙, 𝑡) = T
𝑇 𝒖 (𝝍 (𝒙, 𝑡), 0). (17)

In the work of Nabizadeh et al. [2022], 𝝍 is advected every time step
and T is obtained by taking the finite difference of 𝝍. Deng et al.
[2023] proposed using a velocity buffer to backward march 𝝍 and T

with a Joint-RK4 scheme, which significantly improves the accuracy
and is adopted by us.

Here we explain how to numerically backward march 𝝍. Consider
a material point that is located at grid point (𝑖, 𝑗, 𝑘) at time 𝑡𝑛 , and
we want to find its position at time 0. We have the previous velocity
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Fig. 6. Sink whirlpool with a hole on the bottom.

field 𝒖0, 𝒖1, · · · , 𝒖𝑛−1 in hand. We can consider the time reverses,
the material point starts at the grid point (𝑖, 𝑗, 𝑘), moves according
to the RK4 scheme in 𝒖𝑛−1, · · · , 𝒖1, 𝒖0, and eventually marches to
its position at time 0.

4.2 Discretized Form for Impulse Projection
We generalize GFM [Fedkiw et al. 1999] from velocity projection to
impulse projection. In time step 𝑛, we need to project a divergent
impulse field 𝒎𝑛 to a new divergence-free velocity field 𝒖𝑛 ,

𝒖𝑛 = 𝒎𝑛 − 1
𝜌
∇𝛼𝑛, (18)

Taking the divergence of both sides will yield a Poisson equation:

∇ ·
(
1
𝜌
∇𝛼𝑛

)
= ∇ ·𝒎𝑛 . (19)

The Poisson equation (19) can be discretized on a MAC grid [Harlow
and Welch 1965]. To illustrate, take the 1-D case as an example. We
use 𝒙𝑖 and 𝒙𝑖+1 to denote the center of cell 𝑖 and cell 𝑖+1. Suppose 𝒙𝑖
is in liquid and 𝒙𝑖+1 is in air. The interface between the two points is
located at 𝒙𝑖 +𝜃Δ𝑥 . At the interface, the left limit of 𝛼𝑛 is 𝛼𝑛

𝐼
and the

right limit is 𝛼𝑛
𝐼
+ [𝛼𝑛] (𝒙𝐼 ). We use a second-order finite difference

method to discretize ∇ ·
(
1
𝜌 ∇𝛼

𝑛
)
on cell 𝑖 . First, we discretize the

divergence operator,
1
Δ𝑥
·
(
1
𝜌
∇𝛼𝑛

)
𝑖+1/2

− 1
Δ𝑥
·
(
1
𝜌
∇𝛼𝑛

)
𝑖−1/2

. (20)

The discretization for
(
1
𝜌 ∇𝛼

𝑛
)
𝑖− 1

2
is straightforward,

1
𝜌𝐿

𝛼𝑛
𝑖
− 𝛼𝑛

𝑖−1
Δ𝑥

. (21)

At the liquid-air interface between 𝒙𝑖 and 𝒙𝑖+1, 𝜌 and 𝛼 are dis-
continuous, but 1

𝜌 ∇𝛼
𝑛 is continuous. Following the logic of GFM,

1
𝜌 ∇𝛼

𝑛 is assumed to be the same for liquid and air between 𝒙𝑖 and
𝒙𝑖+1, which gives(

1
𝜌
∇𝛼𝑛

)
𝑖+1/2

=
1
𝜌𝐿

𝛼𝑛
𝐼
− 𝛼𝑛

𝑖

𝜃Δ𝑥
=

1
𝜌𝐴

𝛼𝑛
𝑖+1 − 𝛼

𝑛
𝐼
− [𝛼𝑛] (𝒙𝐼 )

(1 − 𝜃 )Δ𝑥 . (22)

Vortex Pair (0, 142, 279)

Fig. 7. A pair of vortex tubes crossing liquid-air interface. First row: results
of our method. The second row and third row demonstrate the comparisons.
Bottom left: our method, top left: standard velocity-based GFM solver, Bot-
tom right: BiMocq2, Top right: MC+R.

It can be derived that(
1
𝜌
∇𝛼𝑛

)
𝑖+1/2

=
1
𝜌

𝛼𝑛
𝑖+1 − 𝛼

𝑛
𝑖
− [𝛼𝑛] (𝒙𝐼 )
Δ𝑥

(23)

where
𝜌 = 𝜃𝜌𝐿 + (1 − 𝜃 )𝜌𝐴 . (24)

Then on cell 𝑖 , equation (19) can be discretized as

1
𝜌

𝛼𝑛
𝑖+1 − 𝛼

𝑛
𝑖

Δ𝑥2
− 1
𝜌𝐿

𝛼𝑛
𝑖
− 𝛼𝑛

𝑖−1
Δ𝑥2

=
𝑚𝑛
𝑖+1/2 −𝑚

𝑛
𝑖−1/2

Δ𝑥
+ 1
𝜌

[𝛼𝑛] (𝒙𝐼 )
Δ𝑥2

.

(25)

4.3 Path Integral Projection
Before solving equation (25), the jump term [𝛼𝑛] has to be calcu-
lated. A straightforward method involves maintaining a velocity
buffer and a level set buffer and using backward marched inverse
flow to obtain path integral of 𝜎𝜅, |𝒖 |2 and 𝐺 . However, this direct
approach is impractical. For accurate calculations, 𝝍 must be on the
exact interface during backward marching. In theory, every inter-
facial point should consistently reside on the interface. However,
numerical errors can cause 𝝍 to deviate from the interface. Making
things worse, curvature varies rapidly as the evaluation point devi-
ates, resulting in low accuracy in evaluating the accumulation of
surface tension.

To address this challenge, we propose a two-step approach named
Path Integral Projection. Note that 𝛼𝑛 can be separated into two
parts,

𝛼𝑛 = L𝑡𝑛

𝑡𝑛−1𝑝 +
(
L𝑡𝑛−1
0 𝑝 − 1

2
𝜌L𝑡𝑛

0 |𝒖 |
2 + 𝜌L𝑡𝑛

0 𝐺

)
. (26)

L𝑡𝑛

𝑡𝑛−1
𝑝 can be discretized as 𝑝𝑛Δ𝑡 , which corresponds to what is

projected out in a traditional velocity-based solver in time step 𝑛.
And if wemaintain a pressure buffer,

(
L𝑡𝑛−1
0 𝑝 − 1

2𝜌L
𝑡𝑛

0 |𝒖 |
2 + 𝜌L𝑡𝑛

0 𝐺

)
can be obtained from historical information and can be calculated
with our Path Integral scheme (Algorithm 1). Therefore, we can first
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Fig. 8. A rising bubble ring hitting the liquid-air interface. Top: Visualization of vorticity in two phases using different colormaps. Bottom: Interface.

calculate

𝒖∗ = 𝒎𝑛 − 1
𝜌
∇
(
L𝑡𝑛−1
0 𝑝 − 1

2
𝜌L𝑡𝑛

0 |𝒖 |
2 + 𝜌L𝑡𝑛

0 𝐺

)
, (27)

then perform a velocity projection for 𝒖∗. 𝒖∗ corresponds to the
advected velocity in a traditional advection-projection velocity-
based solver. In this way, we convert the history-dependent jump
term into a geometry-dependent jump term. The projection from
𝒖∗ to 𝒖𝑛 is expressed as

𝒖𝑛 = 𝒖∗ − Δ𝑡 1
𝜌
∇𝑝𝑛 . (28)

Δ𝑡∇ ·
(
1
𝜌
∇𝑝𝑛

)
= ∇ · 𝒖∗ . (29)

In the 1D-example above, the equation (29) can be discretized on
cell 𝑖 as

Δ𝑡

𝜌

𝑝𝑛
𝑖+1 − 𝑝

𝑛
𝑖

Δ𝑥2
− Δ𝑡

𝜌𝐿

𝑝𝑛
𝑖
− 𝑝𝑛

𝑖−1
Δ𝑥2

=
𝑢∗
𝑖+1/2 − 𝑢

∗
𝑖−1/2

Δ𝑥
+ Δ𝑡

𝜌

𝜎𝜅

Δ𝑥2
. (30)

If the distance between a cell and the interface is less than 𝜖 ,
we designate the cell as a narrow-band cell. Faces of such cells
are marked as narrow-band faces. On these narrow-band faces,
instead of calculating 𝒖∗ from 𝒎𝑛 , we opt to advect 𝒖𝑛−1 to obtain
𝒖∗. This modification is crucial for two reasons. First, it avoids
the large velocity gradients near the liquid-air interface, which
can lead to numerical instability when computing 𝒎𝑛 . Second, the
path integral used to calculate L𝑡𝑛−1

0 𝑝 necessitates the interpolation

of 𝑝 . Interpolation near the interface may inadvertently involve
both liquid and air points, leading to invalid results due to the
discontinuous nature of 𝑝 across the liquid-air interface.

5 BIDIRECTIONAL-MARCHED-FLOW-MAP LEVEL SET
The material derivative of the signed distance field 𝜑 is 0. Therefore,
we can use 𝝍 to pull back 𝜑 :

𝜑 (𝒙, 𝑡) = 𝜑 (𝝍 (𝒙, 𝑡), 0) . (31)

Previous works have explored the evolution of 𝜑 using an in-
verse flow map [Li et al. 2023] and a bidirectional flow map [Qu
et al. 2019]. These methods advect 𝝍 every time step. In contrast to
these approaches, our method utilizes a velocity buffer to backward
march 𝝍. Our experiments (Fig. 11, 12) demonstrate that backward
marching significantly improves the accuracy of tracking 𝝍 and
level set in a vortical velocity field.
Advection of a field introduces frequent interpolation, which is

equivalent to applying a low-pass filter to the field. If 𝜑 is directly
advected, then the numeric diffusion is considerable. If we advect 𝝍
every time step and use 𝝍 to pullback 𝜑 , then the numeric diffusion
for 𝜑 is reduced because the frequency of interpolating 𝜑 is reduced.
However, some amount of numeric diffusion still exists, because
advecting 𝝍 can cause numeric diffusion in 𝝍, which influences the
pullback mapping.
We use the fourth-order quasi-Newton method proposed by Li

et al. [2023] for reinitialization of the level set. The forward flow
map, 𝝓, is marched every time step and utilized for back-and-forth
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Algorithm 1 Path Integral
Input: position 𝒙,

time step buffer < Δ𝑡1,Δ𝑡2, · · · ,Δ𝑡𝑛 >,
velocity buffer < 𝒖0, 𝒖1, · · · , 𝒖𝑛−1 >,
pressure buffer < 𝑝1, 𝑝2, · · · , 𝑝𝑛−1 > .

Output:
(
L𝑡𝑛

0 𝐺

)
(𝒙, 𝑡𝑛),(

L𝑡𝑛

0 |𝒖 |
2
)
(𝒙, 𝑡𝑛),(

L𝑡𝑛−1
0 𝑝

)
(𝒙, 𝑡𝑛).

1: ret1, ret2, ret3← 0, 0, 0;
2: for 𝑗 in reversed(range(𝑛)) do
3: ret1 + = −Δ𝑡 𝑗+1 · 𝒈 · 𝒙 ;
4: if 𝑗 < 𝑛 − 1 then
5: ret3 + = Δ𝑡 𝑗+1 · Interpolate(𝑝 𝑗+1, 𝒙);
6: end if
7: 𝒖1 ← Interpolate(𝒖 𝑗 , 𝒙);
8: 𝒙1 ← 𝒙 − 0.5 · Δ𝑡 𝑗+1 · 𝒖1;
9: 𝒖2 ← Interpolate(𝒖 𝑗 , 𝒙1);
10: 𝒙2 ← 𝒙 − 0.5 · Δ𝑡 𝑗+1 · 𝒖2;
11: 𝒖3 ← Interpolate(𝒖 𝑗 , 𝒙2);
12: 𝒙3 ← 𝒙 − Δ𝑡 𝑗+1 · 𝒖3;
13: 𝒖4 ← Interpolate(𝒖 𝑗 , 𝒙3);
14: 𝒙 ← 𝒙 − 1

6 · Δ𝑡
𝑗+1 · (𝒖1 + 2𝒖2 + 2𝒖3 + 𝒖4);

15: ret2 + = 1
6 · Δ𝑡

𝑗+1 · ( |𝒖1 |2 + 2|𝒖2 |2 + 2|𝒖3 |2 + |𝒖4 |2);
16: end for
17: return ret1, ret2, ret3

Algorithm 2 BMFM-LS

Input:initial level set 𝜑0,
forward flow map 𝝓,
time step buffer Δ𝑇 =< Δ𝑡1,Δ𝑡2, · · · ,Δ𝑡𝑛 >,
velocity buffer 𝑼 =< 𝒖0, 𝒖1, · · · , 𝒖𝑛−1 >.

Output: 𝜑𝑛 .
1: 𝝍 ← id;
2: 𝝍 ← RK4_Backward_March(𝝍, 𝑼 ,Δ𝑇 );
3: 𝝓 ← RK4(𝝓, 𝒖𝑛−1,Δ𝑡𝑛);
4: 𝜑 ← 𝜑0 (𝝍);
5: 𝜑0 ← 𝜑 (𝝓);
6: 𝑒 ← (𝜑0 − 𝜑0)/2;
7: 𝜑𝑛 ← 𝜑 − 𝑒 (𝝍);
8: if reinitialize then
9: 𝝓 ← id;
10: 𝜑0 ← reinitialize(𝜑𝑛);
11: Clear Δ𝑇, 𝑼 .
12: end if

error correction [Dupont and Liu 2003]. Instead of being advected,
both 𝝓 and 𝝍 are marched through the velocity field, leading us
to designate our approach as the Bidirectional-Marched-Flow-Map
Level Set (BMFM-LS).

Fig. 9. Comparison experiment: A liquid square oscillating due to surface
tension. Top: Advection-Projection GFM. Bottom: IGFM.

Fig. 10. Comparison experiment: A liquid drop falling into a tank. Top:
Advection-Projection GFM. Bottom: IGFM.

6 TIME INTEGRATION
We summarize the time integration scheme of our method in Al-
gorithm 3. Extending to the previous discussion, the second-order
midpoint method is employed to ensure a symmetric march of bidi-
rectional flow maps.

7 EXPERIMENTS
In this section, we present 6 examples to evaluate our method and 7
examples to demonstrate its application. All examples are performed
on a desktop equipped with a NVIDIA RTX 4080. We implemented
our algorithm in Taichi [Hu et al. 2019] with a CUDA backend. We
use an AMGPCG [Stüben 2001] solver for projection. The narrow-
band 𝜖 ranges from cell size Δ𝑥 to 3Δ𝑥 in our experiments. Unless
otherwise specified, the impulse, level set, flow map are reinitialized
every 5 steps.

7.1 Evaluation
Oscillating Square. We simulate an oscillating liquid square im-

mersed in air. Driven by surface tension, the square is expected
to oscillate. We compare the results of the standard Advection-
Projection GFM and IGFM in Fig. 9. IGFM demonstrates consistent
oscillation frequency with the standard method and stabilizes into
a circular shape.

Droptank. We simulate a liquid drop falling into a tank using
the Advection-Projection GFM and IGFM, with both producing
congruent results. As shown in Fig. 10 the liquid drop undergoes
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Algorithm 3 Time Integration

Input: step number since last reinitialization: 𝑛
Forward flow map 𝝓, its jacobian F

Initial level set 𝜑0, Current level set 𝜑𝑛−1

time step buffer Δ𝑇 =< Δ𝑡1,Δ𝑡2, · · · ,Δ𝑡𝑛 >

velocity buffer 𝑼 =< 𝒖1/2, 𝒖3/2, · · · , 𝒖𝑛−3/2 >

Initial velocity 𝒖0, velocity at the end of last step 𝒖𝑛−1

pressure buffer 𝑃 =< 𝑝1, 𝑝2, · · · , 𝑝𝑛−1 > .

1: 𝜑𝑛−1/2 ← Advect(𝜑𝑛−1, 𝒖𝑛−1,Δ𝑡𝑛/2); ⊲ midpoint method.
2: 𝒖∗∗ ← Advect(𝒖𝑛−1, 𝒖𝑛−1,Δ𝑡𝑛/2);
3: 𝒖̂∗∗ ← Gravity(𝒖∗∗,𝒈,Δ𝑡𝑛/2);
4: 𝒖𝑛−1/2, 𝑝𝑛−1/2 ← Project(𝒖̂∗∗, 𝜑𝑛−1/2);
5: Store 𝒖𝑛−1/2 in 𝑼 ;
6: 𝝍 ← id, T ← 𝑰 ; ⊲ march bidirectional flow map
7: 𝝍, T ← Joint_RK4_Backward_March(𝝍, T, 𝑼 ,Δ𝑇 );
8: 𝝓, F ← Joint_RK4(𝝓, F, 𝒖𝑛−1/2,Δ𝑡𝑛);
9: 𝜑 ← 𝜑0 (𝝍); ⊲ BMFM-LS
10: 𝜑0 ← 𝜑 (𝝓);
11: 𝑒 ← (𝜑0 − 𝜑0)/2
12: 𝜑𝑛 ← 𝜑 − 𝑒 (𝝍);
13: 𝒎̂ ← T𝑇 𝒖0 (𝝍); ⊲ pullback impulse
14: 𝒖̂0 ← F𝑇 𝒎̂(𝝓); ⊲ error correction
15: 𝒆 ← (𝒖̂0 − 𝒖0)/2;
16: 𝒎𝑛 ← 𝒎̂ − T𝑇 𝒆(𝝍);
17: 𝒖∗ ← Advect(𝒖𝑛−1, 𝒖𝑛−1/2,Δ𝑡𝑛) in narrow band;
18: L𝑡𝑛

0 𝐺,L𝑡𝑛

0 |𝒖 |
2,L𝑡𝑛−1

0 𝑝 ← Path_Integral(𝑼 , 𝑷 ,Δ𝑇 );
19: 𝒖∗ ← 𝒎𝑛 − 1

𝜌 ∇
(
L𝑡𝑛−1
0 𝑝 − 1

2𝜌L
𝑡𝑛

0 |𝒖 |
2 + 𝜌L𝑡𝑛

0 𝐺

)
out of narrow

band;
20: 𝒖𝑛, 𝑝𝑛 ← Project(𝒖∗, 𝜑𝑛);
21: Store 𝑝𝑛 in 𝑷 ;
22: Δ𝑡𝑛+1 ← CFL(𝒖𝑛);
23: Store Δ𝑡𝑛+1 in Δ𝑇 ;
24: if reinitialize then
25: 𝝓 ← id, F ← 𝑰 ;
26: 𝜑0 ← reinitialize(𝜑𝑛);𝒖0 ← 𝒖𝑛 ;
27: Clear 𝑼 , 𝑷 ;
28: Δ𝑇 ←< Δ𝑡𝑛+1 >; 𝑛 ← 1;
29: end if

deformation during its descent, flattening at the bottom, which
typifies the dynamics observed in two-phase flow simulations.

Vortex Ring Reflection. Similar to the reflection of light, a vortex
ring exhibits reflective behavior when it obliquely moves towards
the liquid-air interface at a moderate angle, a phenomenon consis-
tently observed in real-world experiments[Su and Zhang 2023]. As
shown in Fig. 3, our method successfully captures this phenomenon.

Flow Map Test: Single Vortex. We employ various schemes to
evolve 𝝍 within a steady vortical velocity field. A single vortex
is at the center, and the angular velocity 𝜔 varies with radius 𝑟 :

𝜔 = 𝑘/(𝑟 + 𝑎)2 ·
[
1 − exp (−(𝑟 + 𝑎)2/𝑏2)

]
(32)

Figure Resolution 𝜌𝐿/𝜌𝐴 Simulation time/step

Fig. 9 128 × 128 1000 0.021s
Fig. 10 128 × 128 1000 0.023s
Fig. 6 256 × 128 × 256 1000 0.963s
Fig. 3 384 × 128 × 128 1000 0.697s
Fig. 7 128 × 128 × 128 1000 0.242s
Fig. 14 256 × 192 × 256 100 1.153s
Fig. 5 384 × 256 × 256 100 2.676s
Fig. 4 256 × 256 × 256 100 1.814s
Fig. 2 256 × 64 × 128 1000 0.281s
Fig. 8 256 × 128 × 256 100 0.972s
Fig. 15 128 × 64 × 128 1000 0.113s

Table 1. Statistics. Simulation time is measured on a Nvidia RTX 4080 GPU
and averaged. The CFL number is 1.0 for all examples.

Fig. 11. Inverse flow map 𝝍 is evolved in the steady velocity field of a single
vortex centered at (0.5, 0.5). (a) shows the streamlines of the single vortex.
(b)(c)(d) record the trails of 𝝍 (𝒙, · ) evolved with different schemes. The blue
square box denotes 𝒙 = (0.617, 0.5) , and the red triangle denotes 𝝍 (𝒙, 𝑡 ) .
(b) advection with DMC. (c) advection with TVD-RK3 and bicubic Hermite
interpolation. (d) RK4 Backward March.

with 𝑘 = 0.005, 𝑎 = 0.000001, 𝑏 = 0.02. The domain is a 1.0-unit
square which is discretized using a 128× 128 grid. We test the advec-
tion of 𝝍 using various numerical methods: advection with DMC
[Cho et al. 2018], advection with TVD-RK3 and bicubic Hermite
interpolation, and RK4 Backward March, corresponding to BiMocq2,
GARM-LS, and BMFM-LS, respectively. Ideally, 𝒙 and 𝝍 (𝒙, 𝑡) should
align the same circular orbit. However, as shown in Fig. 11, when 𝝍
is advected, even with a high-order scheme, interpolation error can
cause 𝝍 (𝒙, 𝑡) to deviate from the circular orbit where 𝒙 is located.
In contrast, backward marched 𝝍 (𝒙, 𝑡) remains perfectly on the
circular orbit.

Level Set Test: Vortex Ring. We evolve the level set of a torus within
a steady, divergence-free velocity field of a vortex ring, where the
major radius and position of the vortex ring match those of the
torus. The domain is discretized with a 128 × 128 × 128 grid and
the reinitialization interval is 10. Ideally, the volume of the torus
should be preserved during evolution. However, as depicted in Fig.
13, significant volume loss occurs when the level set of the torus is
evolved using BiMocq2 and GARM-LS. This is because inaccurate
tracking of 𝝍 can lead to an error in computing 𝜑 during pullback
operations. Thus, precise tracking of the level set of the torus within
the velocity field of a vortex ring is crucial for accurately simulating
toroidal bubble rings.
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(a) (b) (c) (d) (e)

Fig. 12. The level set of a torus is evolved in the steady velocity field of
a vortex ring. (a) Vorticity. (b) Initial State. (c) BiMocq2. (d) GARM-LS. (e)
BMFM-LS.

Fig. 13. Relative volume of the level set evolved in the velocity field of a
vortex ring. Results of BiMocq2, GARM-LS and BMFM-LS are plotted.

Vortex Pair. We simulate a pair of vortex tubes crossing the liquid-
air interface, creating whirlpools on the interface, and causing mu-
tual spin between the tubes. In the first row of Fig. 7, we visualize
the simulation results of our method, coloring the vorticity in the
air using the coolwarm map, and the vorticity in the liquid using
the plasma map, a convention maintained in subsequent examples.
In the second row and third row, we compare our method (bottom
left) with the Advection-Projection GFM(top left), Bimocq2 (bot-
tom right) and MC+R [Selle et al. 2008; Zehnder et al. 2018] (top
right). We selected MC+R and Bimocq2 due to their exceptional
abilities to preserve vortical structures in smoke simulation. These
methods are velocity-based Eulerian approaches, thus allowing for
generalization to two-phase flow simulations by integrating them
into an Advection-Projection GFM solver. We opted against Cov-
ector Fluids[Nabizadeh et al. 2022] because it does not naturally
fit into two-phase flow simulations. In the simulations, vorticity
dissipates rapidly using the standard GFM solver. The vortical struc-
ture is better preserved by BiMocq2. Instability near the interface
is observed in MC+R. In contrast, our method not only generates
a smooth interface but also more effectively preserves the vortical
structures. As shown in Table 2, our approach is more expensive
than the Advection-Projection GFM. The extra time cost mainly

Average Time Cost per Step

Method Advection-Projection GFM IGFM

Time Cost 0.126s 0.242s

Time Breakdown of IGFM

Projection Backward March & Path Integral Level Set Reinit & etc

86.7% 2.4% 10.9%

Table 2. Time Comparison & Time Breakdown for Fig. 7.

comes from two aspects: (1) In each step, we must march the inverse
flow map backward and perform a Lagrangian path integral, and (2)
solve an additional Poisson for the midpoint. Table 2 shows that (2)
dominates the computational cost. Therefore, the running time of
our method is about twice as expensive as the Avection-Projection
GFM.

7.2 Application
Sink Whirlpool. Fig. 6 shows the simulation of a sink whirlpool.

Initiated with a rotational velocity field and a hole at the bottom,
detailed swirling patterns are observable on the interface.

Rising Bubbles. Fig. 14 shows numerous small bubbles rising
within a vortical initial velocity field. The bubbles, randomly gen-
erated in the green region, vary in radius. Due to surface tension,
smaller bubbles retain a spherical shape, while larger bubbles exhibit
noticeable deformation. Notably, the volume of the smaller bubbles
is preserved without employing any specific volume control meth-
ods, and the vortical structure of the velocity field is maintained
throughout the process.

Velocity

25%

Flow Map

35%

Path Integral

12%

Level Set

10%

Solver

13%

etc

5%

Leapfrogging Bubble Rings.
Preservation of vortical
structures and accurate
tracking of level set en-
able the simulation of
bubble rings. Fig. 5 dis-
plays the leapfrogging
behavior of two bubble
rings. Initially, these iden-
tical rings are coaxial. As
a result of the induced
flow, where the dynamics
of one ring influence the
other, the two bubble rings repeatedly pass through each other.
Here we demonstrate the memory breakdown of our method for
this experiment, where the total memory cost is 11.22GB. To pull-
back impulse and level set, we need to store the forward/inverse
flow maps on mac grid centers and faces as well as their gradients.
Also, we need to allocate a buffer for the history of velocities, which
leads to extra memory overhead.

Colliding Bubble Rings. Fig. 4 shows the collision between two
coaxial bubble rings. The two bubble rings initially possess oppo-
site vorticities. Consequently, the induced flows lead to the rings
approaching and eventually colliding with each other. Following
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Fig. 14. Rising bubbles in a vortical velocity field. Bubbles are randomly
generated in the green region.

the collision and subsequent breakup of the rings, small spherical
bubbles form as a result of surface tension.

Swinging Fishtail. Fig. 2 illustrates a swinging fishtail in an in-
coming flow, where half of the fishtail is immersed in air, and the
other half is in liquid. The tangential velocity difference on the solid
boundary generates rich vortex filaments in both air and liquid.

Rising Bubble Ring. Fig. 8 displays a toroidal bubble ring colliding
with the liquid-air interface. As the bubble ring rises and approaches
the interface, its major radius grows. Due to surface tension, the
bubble ring disintegrates into smaller bubbles that float towards the
interface. Upon impact with the interface, the vortex ring generates
circular ripples, and the secondary vortex filaments induce a pattern
of bumps and dips on the interface.

Heaving Board. Fig. 15 shows a heaving board in an incoming
flow. Controlled by a sinuous signal, the board heaves up and down
periodically. The interaction between the flow and the board’s move-
ment generates surface waves, and vortex shedding can be observed
at the trailing edge of the board. As an ablation study, we simulate
the process using IGFM with varying reinitialization intervals. The
result shows that the simulation with a longer reinitialization in-
terval has less dissipation and preserves vortical structures better.

8 DISCUSSIONS AND FUTURE WORK
In conclusion, we propose a novel impulse ghost fluid method to
simulate two-phase flows, capturing complex interactions between
vorticity and interfaces. We devise a path integral scheme employ-
ing spatiotemporal buffers to tackle the history-dependent jump
condition in impulse projection. In addition, we devised a bidirec-
tional flow map scheme to preserve small volumes of the level set
interface during its evolution.
Our method stems from the GFM, which features a division of

density in pressure projection. Besides GFM, researchers have also
explored enforcing the incompressibility for air without solving
for the air part. For example, Ando et al. [2015] adopts a stream
function formulation. While the projected velocity field may have

Fig. 15. A heaving board in an inlet. Top row: reinitialize every time step.
Middle row: reinitialize every 5 steps. Bottom row: reinitialize every 10 steps.

a small divergence due to numerical tolerance, the stream func-
tion solver guarantees that the resulting velocity field is completely
divergence-free. Also, the stream function solver avoids the division
of density in pressure projection. Previous works using GFM (e.g.,
MultiFLIP [Boyd and Bridson 2012]) have demonstrated examples
with a density ratio of 1000: 1. However, a large density ratio leads
to a large spectral condition number of the matrix in pressure pro-
jection, slowing down the convergence of the Conjugate Gradient
method. We adopt an AMGPCG solver with Galerkin coarsening
and multi-color Gauss-Seidel smoother to accelerate the conver-
gence. Using a constant interpolation between different levels, the
solver can be implemented in an efficient matrix-free style.
Our approach has several limitations. First, viscosity was not

included in our current framework. Although gauge transformation
can be defined in a viscous setting, an extra term is introduced to
the evolution of impulse, hindering reconstruction of impulse with
flow maps and initial condition. Moreover, viscosity will add extra
complexities to the jump conditions with gauge variables (e.g., see
[Saye 2016]), which requires further investigation on devising effec-
tive ghost fluid schemes to handle viscosity on the interface. Second,
solid boundaries were treated in a simple way in our simulator. It
would be necessary to incorporate more advanced treatments such
as the high-order cutting-cell method [Ng et al. 2009] to handle
solid boundaries in our ghost fluid framework. Last, our current
implementation is not memory efficient. In memory-limited cases,
one may adopt the neural representation proposed by Deng et al.
[2023] for compression, at the cost of extra training time. How to
maintain the buffer in an economical way in terms of its spatial and
temporal cost is worth investigating. In our future work, we will
further explore in these directions to enhance the current two-phase
ghost fluid solver and tackle more challenging interface-vorticity in-
teraction phenomena. We are particularly motivated by simulating
complex solid-vortex-interface interaction processes such as fish
cross-interface swimming.
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A EVOLUTION OF IMPULSE
Here we prove equation (12) makes 𝒎 satisfy equation (11). By the
definition of L and 𝛼 ,

D𝛼
D𝑡

= 𝑝 − 1
2
𝜌 |𝒖 |2 + 𝜌𝐺.

Expand the material derivative of ∇𝛼 as

D(∇𝛼)
D𝑡

= ∇
(
D𝛼
D𝑡

)
− (∇𝒖)𝑇∇𝛼

= ∇𝑝 − 𝜌 (∇𝒖)𝑇 𝒖 − 𝜌𝒈 − (∇𝒖)𝑇∇𝛼.

By substituting equation (10) into the LHS of equation (11)

D𝒎
D𝑡

=
D𝒖
D𝑡
+ 1
𝜌

D(∇𝛼)
D𝑡

= − 1
𝜌
∇𝑝 + 𝒈 + 1

𝜌
∇𝑝 − 𝒈 − (∇𝒖)𝑇 𝒖 − 1

𝜌
(∇𝒖)𝑇∇𝛼

= −(∇𝒖)𝑇 (𝒖 + 1
𝜌
∇𝛼) = −(∇𝒖)𝑇𝒎.
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